/* * Copyright (C) 2014 Freie Universität Berlin * * This file is subject to the terms and conditions of the GNU Lesser * General Public License v2.1. See the file LICENSE in the top level * directory for more details. */ /** * @ingroup driver_periph * @{ * * @file * @brief Low-level timer driver implementation for the SAM3X8E CPU * * @author Hauke Petersen * * @} */ #include #include #include "board.h" #include "cpu.h" #include "sched.h" #include "thread.h" #include "periph/timer.h" #include "periph_conf.h" typedef struct { void (*cb)(int); } timer_conf_t; /** * @brief Timer state memory */ static timer_conf_t timer_config[TIMER_NUMOF]; /** * @brief Setup the given timer * * The SAM3X8E has 3 timers. Each timer has 3 independent channels. * RIOT uses the timers in WAVE mode with the following clock chaining: * * ---------- ---------- * | | | |-> IRQ-compareA * | TCx[2] | ---- TIOA2 --->| TCx[0] |-> IRQ-compareB * | | | | |-> IRQ-compareC * ---------- | ---------- * ^ | * | | ---------- * | | | |-> IRQ-compareA * TIMER_CLOCK1 ------->| TCx[1] |-> IRQ-compareB * | |-> IRQ-compareC * ---------- * * For each timer, channel 0 is used to implement a prescaler. Channel 0 is * driven by the MCK / 2 (42MHz) (TIMER_CLOCK1). */ int timer_init(tim_t dev, unsigned long freq, void (*callback)(int)) { Tc *tim; /* select the timer and enable the timer specific peripheral clocks */ switch (dev) { #if TIMER_0_EN case TIMER_0: tim = TIMER_0_DEV; PMC->PMC_PCER0 = (1 << ID_TC0) | (1 << ID_TC1) | (1 << ID_TC2); break; #endif #if TIMER_1_EN case TIMER_1: tim = TIMER_1_DEV; PMC->PMC_PCER0 = (1 << ID_TC3) | (1 << ID_TC4); PMC->PMC_PCER1 = (1 << (ID_TC5 - 32)); break; #endif #if TIMER_2_EN case TIMER_2: tim = TIMER_2_DEV; PMC->PMC_PCER1 = (1 << (ID_TC6 - 32)) | (1 << (ID_TC7 - 32)) | (1 << (ID_TC8 - 32)); break; #endif case TIMER_UNDEFINED: default: return -1; } /* save callback */ timer_config[dev].cb = callback; /* configure the timer block by connecting TIOA2 to XC0 and XC1 */ tim->TC_BMR = TC_BMR_TC0XC0S_TIOA2 | TC_BMR_TC1XC1S_TIOA2; /* configure and enable channels 0 and 1 to use XC0 and XC1 as input */ tim->TC_CHANNEL[0].TC_CMR = TC_CMR_TCCLKS_XC0 | TC_CMR_WAVE | TC_CMR_EEVT_XC0; tim->TC_CHANNEL[1].TC_CMR = TC_CMR_TCCLKS_XC1 | TC_CMR_WAVE | TC_CMR_EEVT_XC0; tim->TC_CHANNEL[0].TC_CCR = TC_CCR_CLKEN | TC_CCR_SWTRG; /* and start */ tim->TC_CHANNEL[1].TC_CCR = TC_CCR_CLKEN | TC_CCR_SWTRG; /* and start */ /* configure channel 2: * - select wave mode * - set input clock to TIMER_CLOCK1 (MCK/2) * - reload on TC_CV == TC_RC * - let TIOA2 signal be toggled when TC_CV == TC_RC */ tim->TC_CHANNEL[2].TC_CMR = TC_CMR_TCCLKS_TIMER_CLOCK1 | TC_CMR_WAVE | TC_CMR_WAVSEL_UP_RC | TC_CMR_ACPC_TOGGLE; /* configure the frequency of channel 2 to freq * 4 * * note: as channels 0 and 1 are only incremented on rising edges of TIOA2 line and * channel 2 toggles this line on each timer tick, the actual frequency driving ch0/1 * is f_ch2 / 2 --> f_ch0/1 = (MCK / 2) / 2 / freq. */ tim->TC_CHANNEL[2].TC_RC = (CLOCK_CORECLOCK / 4) / freq; /* start channel 2 */ tim->TC_CHANNEL[2].TC_CCR = TC_CCR_CLKEN | TC_CCR_SWTRG; /* enable interrupts for given timer */ timer_irq_enable(dev); return 0; } int timer_set(tim_t dev, int channel, unsigned int timeout) { return timer_set_absolute(dev, channel, timer_read(dev) + timeout); } int timer_set_absolute(tim_t dev, int channel, unsigned int value) { Tc *tim; /* get timer base register address */ switch (dev) { #if TIMER_0_EN case TIMER_0: tim = TIMER_0_DEV; break; #endif #if TIMER_1_EN case TIMER_1: tim = TIMER_1_DEV; break; #endif #if TIMER_2_EN case TIMER_2: tim = TIMER_2_DEV; break; #endif case TIMER_UNDEFINED: default: return -1; } /* set timeout value */ switch (channel) { case 0: tim->TC_CHANNEL[0].TC_RA = value; tim->TC_CHANNEL[0].TC_IER = TC_IER_CPAS; break; case 1: tim->TC_CHANNEL[0].TC_RB = value; tim->TC_CHANNEL[0].TC_IER = TC_IER_CPBS; break; case 2: tim->TC_CHANNEL[0].TC_RC = value; tim->TC_CHANNEL[0].TC_IER = TC_IER_CPCS; break; case 3: tim->TC_CHANNEL[1].TC_RA = value; tim->TC_CHANNEL[1].TC_IER = TC_IER_CPAS; break; case 4: tim->TC_CHANNEL[1].TC_RB = value; tim->TC_CHANNEL[1].TC_IER = TC_IER_CPBS; break; case 5: tim->TC_CHANNEL[1].TC_RC = value; tim->TC_CHANNEL[1].TC_IER = TC_IER_CPCS; break; default: return -1; } return 1; } int timer_clear(tim_t dev, int channel) { Tc *tim; /* get timer base register address */ switch (dev) { #if TIMER_0_EN case TIMER_0: tim = TIMER_0_DEV; break; #endif #if TIMER_1_EN case TIMER_1: tim = TIMER_1_DEV; break; #endif #if TIMER_2_EN case TIMER_2: tim = TIMER_2_DEV; break; #endif case TIMER_UNDEFINED: default: return -1; } /* disable the channels interrupt */ switch (channel) { case 0: tim->TC_CHANNEL[0].TC_IDR = TC_IDR_CPAS; break; case 1: tim->TC_CHANNEL[0].TC_IDR = TC_IDR_CPBS; break; case 2: tim->TC_CHANNEL[0].TC_IDR = TC_IDR_CPCS; break; case 3: tim->TC_CHANNEL[1].TC_IDR = TC_IDR_CPAS; break; case 4: tim->TC_CHANNEL[1].TC_IDR = TC_IDR_CPBS; break; case 5: tim->TC_CHANNEL[1].TC_IDR = TC_IDR_CPCS; break; default: return -1; } return 1; } /* * The timer channels 1 and 2 are configured to run with the same speed and * have the same value (they run in parallel), so only on of them is returned. */ unsigned int timer_read(tim_t dev) { switch (dev) { #if TIMER_0_EN case TIMER_0: return TIMER_0_DEV->TC_CHANNEL[0].TC_CV; #endif #if TIMER_1_EN case TIMER_1: return TIMER_1_DEV->TC_CHANNEL[0].TC_CV; #endif #if TIMER_2_EN case TIMER_2: return TIMER_2_DEV->TC_CHANNEL[0].TC_CV; #endif case TIMER_UNDEFINED: default: return 0; } } /* * For stopping the counting of channels 1 + 2, channel 0 is disabled. */ void timer_stop(tim_t dev) { switch (dev) { #if TIMER_0_EN case TIMER_0: TIMER_0_DEV->TC_CHANNEL[2].TC_CCR = TC_CCR_CLKDIS; break; #endif #if TIMER_1_EN case TIMER_1: TIMER_1_DEV->TC_CHANNEL[2].TC_CCR = TC_CCR_CLKDIS; break; #endif #if TIMER_2_EN case TIMER_2: TIMER_2_DEV->TC_CHANNEL[2].TC_CCR = TC_CCR_CLKDIS; break; #endif case TIMER_UNDEFINED: break; } } void timer_start(tim_t dev) { switch (dev) { #if TIMER_0_EN case TIMER_0: TIMER_0_DEV->TC_CHANNEL[2].TC_CCR = TC_CCR_CLKEN; break; #endif #if TIMER_1_EN case TIMER_1: TIMER_1_DEV->TC_CHANNEL[2].TC_CCR = TC_CCR_CLKEN; break; #endif #if TIMER_2_EN case TIMER_2: TIMER_2_DEV->TC_CHANNEL[2].TC_CCR = TC_CCR_CLKEN; break; #endif case TIMER_UNDEFINED: break; } } void timer_irq_enable(tim_t dev) { switch (dev) { #if TIMER_0_EN case TIMER_0: NVIC_EnableIRQ(TC0_IRQn); NVIC_EnableIRQ(TC1_IRQn); break; #endif #if TIMER_1_EN case TIMER_1: NVIC_EnableIRQ(TC3_IRQn); NVIC_EnableIRQ(TC4_IRQn); break; #endif #if TIMER_2_EN case TIMER_2: NVIC_EnableIRQ(TC6_IRQn); NVIC_EnableIRQ(TC7_IRQn); break; #endif case TIMER_UNDEFINED: break; } } void timer_irq_disable(tim_t dev) { switch (dev) { #if TIMER_0_EN case TIMER_0: NVIC_DisableIRQ(TC0_IRQn); NVIC_DisableIRQ(TC1_IRQn); break; #endif #if TIMER_1_EN case TIMER_1: NVIC_DisableIRQ(TC3_IRQn); NVIC_DisableIRQ(TC4_IRQn); break; #endif #if TIMER_2_EN case TIMER_2: NVIC_DisableIRQ(TC6_IRQn); NVIC_DisableIRQ(TC7_IRQn); break; #endif case TIMER_UNDEFINED: break; } } #if TIMER_0_EN void TIMER_0_ISR1(void) { uint32_t status = TIMER_0_DEV->TC_CHANNEL[0].TC_SR; if (status & TC_SR_CPAS) { TIMER_0_DEV->TC_CHANNEL[0].TC_IDR = TC_IDR_CPAS; timer_config[TIMER_0].cb(0); } else if (status & TC_SR_CPBS) { TIMER_0_DEV->TC_CHANNEL[0].TC_IDR = TC_IDR_CPBS; timer_config[TIMER_0].cb(1); } else if (status & TC_SR_CPCS) { TIMER_0_DEV->TC_CHANNEL[0].TC_IDR = TC_IDR_CPCS; timer_config[TIMER_0].cb(2); } if (sched_context_switch_request) { thread_yield(); } } void TIMER_0_ISR2(void) { uint32_t status = TIMER_0_DEV->TC_CHANNEL[1].TC_SR; if (status & TC_SR_CPAS) { TIMER_0_DEV->TC_CHANNEL[1].TC_IDR = TC_IDR_CPAS; timer_config[TIMER_0].cb(3); } else if (status & TC_SR_CPBS) { TIMER_0_DEV->TC_CHANNEL[1].TC_IDR = TC_IDR_CPBS; timer_config[TIMER_0].cb(4); } else if (status & TC_SR_CPCS) { TIMER_0_DEV->TC_CHANNEL[1].TC_IDR = TC_IDR_CPCS; timer_config[TIMER_0].cb(5); } if (sched_context_switch_request) { thread_yield(); } } #endif /* TIMER_0_EN */ #if TIMER_1_EN void TIMER_1_ISR1(void) { uint32_t status = TIMER_1_DEV->TC_CHANNEL[0].TC_SR; if (status & TC_SR_CPAS) { TIMER_1_DEV->TC_CHANNEL[0].TC_IDR = TC_IDR_CPAS; timer_config[TIMER_1].cb(0); } if (status & TC_SR_CPBS) { TIMER_1_DEV->TC_CHANNEL[0].TC_IDR = TC_IDR_CPBS; timer_config[TIMER_1].cb(1); } if (status & TC_SR_CPCS) { TIMER_1_DEV->TC_CHANNEL[0].TC_IDR = TC_IDR_CPCS; timer_config[TIMER_1].cb(2); } if (sched_context_switch_request) { thread_yield(); } } void TIMER_1_ISR2(void) { uint32_t status = TIMER_1_DEV->TC_CHANNEL[1].TC_SR; if (status & TC_SR_CPAS) { TIMER_1_DEV->TC_CHANNEL[1].TC_IDR = TC_IDR_CPAS; timer_config[TIMER_1].cb(3); } if (status & TC_SR_CPBS) { TIMER_1_DEV->TC_CHANNEL[1].TC_IDR = TC_IDR_CPBS; timer_config[TIMER_1].cb(4); } if (status & TC_SR_CPCS) { TIMER_1_DEV->TC_CHANNEL[1].TC_IDR = TC_IDR_CPCS; timer_config[TIMER_1].cb(5); } if (sched_context_switch_request) { thread_yield(); } } #endif /* TIMER_1_EN */ #if TIMER_2_EN void TIMER_2_ISR1(void) { uint32_t status = TIMER_2_DEV->TC_CHANNEL[0].TC_SR; if (status & TC_SR_CPAS) { TIMER_2_DEV->TC_CHANNEL[0].TC_IDR = TC_IDR_CPAS; timer_config[TIMER_2].cb(0); } else if (status & TC_SR_CPBS) { TIMER_2_DEV->TC_CHANNEL[0].TC_IDR = TC_IDR_CPBS; timer_config[TIMER_2].cb(1); } else if (status & TC_SR_CPCS) { TIMER_2_DEV->TC_CHANNEL[0].TC_IDR = TC_IDR_CPCS; timer_config[TIMER_2].cb(2); } if (sched_context_switch_request) { thread_yield(); } } void TIMER_2_ISR2(void) { uint32_t status = TIMER_2_DEV->TC_CHANNEL[1].TC_SR; if (status & TC_SR_CPAS) { TIMER_2_DEV->TC_CHANNEL[1].TC_IDR = TC_IDR_CPAS; timer_config[TIMER_2].cb(3); } else if (status & TC_SR_CPBS) { TIMER_2_DEV->TC_CHANNEL[1].TC_IDR = TC_IDR_CPBS; timer_config[TIMER_2].cb(4); } else if (status & TC_SR_CPCS) { TIMER_2_DEV->TC_CHANNEL[1].TC_IDR = TC_IDR_CPCS; timer_config[TIMER_2].cb(5); } if (sched_context_switch_request) { thread_yield(); } } #endif /* TIMER_2_EN */