/* * Copyright (C) 2018 Mathias Tausig * * This file is subject to the terms and conditions of the GNU Lesser * General Public License v2.1. See the file LICENSE in the top level * directory for more details. */ /** * @ingroup sys_crypto * @{ * * @file * @brief Offset Codebook (OCB3) AEAD mode as specified in RFC 7253 * * @author Mathias Tausig * */ #include "crypto/modes/ocb.h" #include #include #define OCB_MODE_ENCRYPT 1 #define OCB_MODE_DECRYPT 2 struct ocb_state { const cipher_t *cipher; uint8_t l_star[16]; uint8_t l_zero[16]; uint8_t l_dollar[16]; uint8_t checksum[16]; uint8_t offset[16]; }; typedef struct ocb_state ocb_state_t; static void double_block(const uint8_t source[16], uint8_t dest[16]) { uint8_t msb = source[0] >> 7; for (uint8_t i = 0; i < 15; ++i) { dest[i] = source[i] << 1 | source[i + 1] >> 7; } dest[15] = (source[15] << 1) ^ (0x87 * msb); } static size_t ntz(size_t n) { /* ntz must only be run on positive values */ if (n == 0) { return SIZE_MAX; } size_t ret = 0; while (n % 2 == 0) { ++ret; n = n >> 1; } return ret; } static void calculate_l_i(const uint8_t l_zero[16], size_t i, uint8_t output[16]) { memcpy(output, l_zero, 16); while ((i--) > 0) { double_block(output, output); } } static void xor_block(const uint8_t block1[16], const uint8_t block2[16], uint8_t output[16]) { for (uint8_t i = 0; i < 16; ++i) { output[i] = block1[i] ^ block2[i]; } } static void processBlock(ocb_state_t *state, size_t blockNumber, const uint8_t input[16], uint8_t output[16], uint8_t mode) { /* Offset_i = Offset_{i-1} xor L_{ntz(i)} */ uint8_t l_i[16]; calculate_l_i(state->l_zero, ntz(blockNumber + 1), l_i); xor_block(state->offset, l_i, state->offset); /* Sum_i = Sum_{i-1} xor ENCIPHER(K, A_i xor Offset_i) */ uint8_t cipher_output[16], cipher_input[16]; xor_block(input, state->offset, cipher_input); if (mode == OCB_MODE_ENCRYPT) { state->cipher->interface->encrypt(&(state->cipher->context), cipher_input, cipher_output); } else if (mode == OCB_MODE_DECRYPT) { state->cipher->interface->decrypt(&(state->cipher->context), cipher_input, cipher_output); } xor_block(state->offset, cipher_output, output); /* Checksum_i = Checksum_{i-1} xor P_i */ if (mode == OCB_MODE_ENCRYPT) { xor_block(state->checksum, input, state->checksum); } else if (mode == OCB_MODE_DECRYPT) { xor_block(state->checksum, output, state->checksum); } } static void hash(ocb_state_t *state, const uint8_t *data, size_t data_len, uint8_t output[16]) { /* Calculate the number of full blocks in data */ size_t m = (data_len - (data_len % 16)) / 16; size_t remaining_data_len = data_len - m * 16; /* Sum_0 = zeros(128) */ memset(output, 0, 16); /* Offset_0 = zeros(128) */ uint8_t offset[16]; memset(offset, 0, 16); for (size_t i = 0; i < m; ++i) { /* Offset_i = Offset_{i-1} xor L_{ntz(i)} */ uint8_t l_i[16]; calculate_l_i(state->l_zero, ntz(i + 1), l_i); xor_block(offset, l_i, offset); /* Sum_i = Sum_{i-1} xor ENCIPHER(K, A_i xor Offset_i) */ uint8_t enciphered_block[16], cipher_input[16]; xor_block(data, offset, cipher_input); state->cipher->interface->encrypt(&(state->cipher->context), cipher_input, enciphered_block); xor_block(output, enciphered_block, output); data += 16; } if (remaining_data_len > 0) { /* Offset_* = Offset_m xor L_* */ xor_block(offset, state->l_star, offset); /* CipherInput = (A_* || 1 || zeros(127-bitlen(A_*))) xor Offset_* */ uint8_t cipher_input[16]; memset(cipher_input, 0, 16); memcpy(cipher_input, data, remaining_data_len); cipher_input[remaining_data_len] = 0x80; xor_block(cipher_input, offset, cipher_input); /* Sum = Sum_m xor ENCIPHER(K, CipherInput) */ uint8_t enciphered_block[16]; state->cipher->interface->encrypt(&(state->cipher->context), cipher_input, enciphered_block); xor_block(output, enciphered_block, output); } } static void init_ocb(const cipher_t *cipher, uint8_t tag_len, const uint8_t *nonce, size_t nonce_len, ocb_state_t *state) { state->cipher = cipher; /* Key-dependent variables L_* = ENCIPHER(K, zeros(128)) L_$ = double(L_*) L_0 = double(L_$) L_i = double(L_{i-1}) for every integer i > 0 */ uint8_t zero_block[16]; memset(zero_block, 0, 16); cipher->interface->encrypt(&(cipher->context), zero_block, state->l_star); double_block(state->l_star, state->l_dollar); double_block(state->l_dollar, state->l_zero); /* Nonce-dependent and per-encryption variables */ /* Nonce = num2str(TAGLEN mod 128,7) || zeros(120-bitlen(N)) || 1 || N */ uint8_t nonce_padded[16]; memset(nonce_padded, 0, 16); nonce_padded[0] = (tag_len * 8) << 1; nonce_padded[15 - nonce_len] = 0x01; memcpy(nonce_padded + 16 - nonce_len, nonce, nonce_len); /* bottom = str2num(Nonce[123..128])*/ uint8_t bottom = nonce_padded[15] & 0x3F; /* Ktop = ENCIPHER(K, Nonce[1..122] || zeros(6)) */ nonce_padded[15] = nonce_padded[15] & 0xC0; uint8_t ktop[16]; cipher->interface->encrypt(&(cipher->context), nonce_padded, ktop); /* Stretch = Ktop || (Ktop[1..64] xor Ktop[9..72]) */ uint8_t stretch[24]; memcpy(stretch, ktop, 16); for (uint8_t i = 0; i < 8; ++i) { stretch[16 + i] = ktop[i] ^ ktop[i + 1]; } /* Offset_0 = Stretch[1+bottom..128+bottom] */ uint8_t offset_start_byte = bottom / 8; uint8_t offset_start_bit = bottom - offset_start_byte * 8; for (uint8_t i = 0; i < 16; ++i) { state->offset[i] = (stretch[offset_start_byte + i] << offset_start_bit) | (stretch[offset_start_byte + i + 1] >> (8 - offset_start_bit)); } /* Checksum_0 = zeros(128) */ memset(state->checksum, 0, 16); } static int32_t run_ocb(const cipher_t *cipher, const uint8_t *auth_data, uint32_t auth_data_len, uint8_t tag[16], uint8_t tag_len, const uint8_t *nonce, size_t nonce_len, const uint8_t *input, size_t input_len, uint8_t *output, uint8_t mode) { /* OCB mode only works for ciphers of block length 16 */ if (cipher->interface->block_size != 16) { return OCB_ERR_INVALID_BLOCK_LENGTH; } /* The tag can be at most 128 bit long */ if (tag_len > 16 || tag_len == 0) { return OCB_ERR_INVALID_TAG_LENGTH; } /* The nonce can be at most 120 bit long */ if (nonce_len >= 16 || nonce_len == 0) { return OCB_ERR_INVALID_NONCE_LENGTH; } ocb_state_t state; init_ocb(cipher, tag_len, nonce, nonce_len, &state); /* Calculate the number of full blocks in data */ size_t m = (input_len - (input_len % 16)) / 16; size_t remaining_input_len = input_len - m * 16; /* Process any whole blocks */ size_t output_pos = 0; for (size_t i = 0; i < m; ++i) { processBlock(&state, i, input, output + output_pos, mode); output_pos += 16; input += 16; } /* Process any final partial block and compute raw tag */ if (remaining_input_len > 0) { /* Offset_* = Offset_m xor L_* */ xor_block(state.offset, state.l_star, state.offset); /* Pad = ENCIPHER(K, Offset_*) */ uint8_t pad[16]; cipher->interface->encrypt(&(cipher->context), state.offset, pad); /* Encrypt: C_* = P_* xor Pad[1..bitlen(P_*)] */ /* Decrypt: P_* = C_* xor Pad[1..bitlen(C_*)] */ uint8_t final_block[remaining_input_len]; memcpy(final_block, pad, remaining_input_len); for (uint8_t i = 0; i < remaining_input_len; ++i) { final_block[i] = input[i] ^ pad[i]; } memcpy(output + output_pos, final_block, remaining_input_len); /* Checksum_* = Checksum_m xor (P_* || 1 || zeros(127-bitlen(P_*))) */ uint8_t padded_block[16]; memset(padded_block, 0, 16); if (mode == OCB_MODE_ENCRYPT) { memcpy(padded_block, input, remaining_input_len); } else if (mode == OCB_MODE_DECRYPT) { memcpy(padded_block, output + output_pos, remaining_input_len); } padded_block[remaining_input_len] = 0x80; xor_block(state.checksum, padded_block, state.checksum); output_pos += remaining_input_len; } /* else: C_* = */ /* Tag = ENCIPHER(K, Checksum_* xor Offset_* xor L_$) xor HASH(K,A) */ /* Tag = ENCIPHER(K, Checksum_m xor Offset_m xor L_$) xor HASH(K,A) */ uint8_t hash_value[16]; hash(&state, auth_data, auth_data_len, hash_value); uint8_t cipher_data[16]; xor_block(state.checksum, state.offset, cipher_data); xor_block(cipher_data, state.l_dollar, cipher_data); cipher->interface->encrypt(&(cipher->context), cipher_data, tag); xor_block(tag, hash_value, tag); return output_pos; } int32_t cipher_encrypt_ocb(const cipher_t *cipher, const uint8_t *auth_data, size_t auth_data_len, uint8_t tag_len, const uint8_t *nonce, size_t nonce_len, const uint8_t *input, size_t input_len, uint8_t *output) { uint8_t tag[16]; if (input_len > (uint32_t)(INT32_MAX - tag_len)) { // We would not be able to return the proper output length for data this long return OCB_ERR_INVALID_DATA_LENGTH; } int cipher_text_length = run_ocb(cipher, auth_data, auth_data_len, tag, tag_len, nonce, nonce_len, input, input_len, output, OCB_MODE_ENCRYPT); if (cipher_text_length < 0) { // An error occurred. Return the error code return cipher_text_length; } /* C = C_1 || C_2 || ... || C_m || C_* || Tag[1..TAGLEN] */ memcpy(output + cipher_text_length, tag, tag_len); return (cipher_text_length + tag_len); } int32_t cipher_decrypt_ocb(const cipher_t *cipher, const uint8_t *auth_data, size_t auth_data_len, uint8_t tag_len, const uint8_t *nonce, size_t nonce_len, const uint8_t *input, size_t input_len, uint8_t *output) { if (input_len > (uint32_t)(INT32_MAX + tag_len)) { // We would not be able to return the proper output length for data this long return OCB_ERR_INVALID_DATA_LENGTH; } uint8_t tag[16]; int plain_text_length = run_ocb(cipher, auth_data, auth_data_len, tag, tag_len, nonce, nonce_len, input, input_len - tag_len, output, OCB_MODE_DECRYPT); if (plain_text_length < 0) { // An error occurred. Return the error code return plain_text_length; } /* Check the tag */ if (memcmp(tag, input + input_len - tag_len, tag_len) == 0) { /* Tag is valid */ /* P = P_1 || P_2 || ... || P_m || P_* */ return plain_text_length; } else { /* Tag is not valid */ /* Destroy the decrypted data to prevent misuse */ memset(output, 0, input_len - tag_len); return OCB_ERR_INVALID_TAG; } }