/* * Copyright (C) 2015 Kaspar Schleiser * 2015 FreshTemp, LLC. * * This file is subject to the terms and conditions of the GNU Lesser * General Public License v2.1. See the file LICENSE in the top level * directory for more details. */ /** * @ingroup cpu_sam0_common * @ingroup drivers_periph_rtc * @ingroup drivers_periph_rtt * @{ * * @file rtc_rtt.c * @brief Low-level RTC/RTT driver implementation * * @author Kaspar Schleiser * @author Baptiste Clenet * @author FWX * @author Benjamin Valentin * * @} */ #include #include "mutex.h" #include "periph/rtc.h" #include "periph/rtt.h" #include "periph_conf.h" #define ENABLE_DEBUG 0 #include "debug.h" /* SAML21 rev B needs an extra bit, which in rev A defaults to 1, but isn't * visible. Thus define it here. */ #ifndef RTC_MODE0_CTRLA_COUNTSYNC #define RTC_MODE0_CTRLA_COUNTSYNC_Pos 15 #define RTC_MODE0_CTRLA_COUNTSYNC (0x1ul << RTC_MODE0_CTRLA_COUNTSYNC_Pos) #endif #ifndef RTC_MODE2_CTRLA_CLOCKSYNC #define RTC_MODE2_CTRLA_CLOCKSYNC_Pos 15 #define RTC_MODE2_CTRLA_CLOCKSYNC (0x1ul << RTC_MODE2_CTRLA_CLOCKSYNC_Pos) #endif #ifdef REG_RTC_MODE0_CTRLA #define RTC_MODE0_PRESCALER \ (__builtin_ctz(2 * RTT_CLOCK_FREQUENCY / RTT_FREQUENCY) << \ RTC_MODE0_CTRLA_PRESCALER_Pos) #else #define RTC_MODE0_PRESCALER \ (__builtin_ctz(RTT_CLOCK_FREQUENCY / RTT_FREQUENCY) << \ RTC_MODE0_CTRL_PRESCALER_Pos) #endif typedef struct { rtc_alarm_cb_t cb; /**< callback called from RTC interrupt */ void *arg; /**< argument passed to the callback */ } rtc_state_t; static rtc_state_t alarm_cb; static rtc_state_t overflow_cb; /* At 1Hz, RTC goes till 63 years (2^5, see 17.8.22 in datasheet) * struct tm younts the year since 1900, use the difference to RIOT_EPOCH * as an offset so the user can set years in RIOT_EPOCH + 63 */ static uint16_t reference_year = RIOT_EPOCH - 1900; static void _wait_syncbusy(void) { if (IS_ACTIVE(MODULE_PERIPH_RTT)) { #ifdef REG_RTC_MODE0_SYNCBUSY while (RTC->MODE0.SYNCBUSY.reg) {} #else while (RTC->MODE0.STATUS.bit.SYNCBUSY) {} #endif } else { #ifdef REG_RTC_MODE2_SYNCBUSY while (RTC->MODE2.SYNCBUSY.reg) {} #else while (RTC->MODE2.STATUS.bit.SYNCBUSY) {} #endif } } static void _read_req(void) { #ifdef RTC_READREQ_RREQ RTC->MODE0.READREQ.reg = RTC_READREQ_RREQ; _wait_syncbusy(); #endif } static void _poweron(void) { #ifdef MCLK MCLK->APBAMASK.reg |= MCLK_APBAMASK_RTC; #else PM->APBAMASK.reg |= PM_APBAMASK_RTC; #endif } __attribute__((unused)) static bool _power_is_on(void) { #ifdef MCLK return MCLK->APBAMASK.reg & MCLK_APBAMASK_RTC; #else return PM->APBAMASK.reg & PM_APBAMASK_RTC; #endif } static void _poweroff(void) { #ifdef MCLK MCLK->APBAMASK.reg &= ~MCLK_APBAMASK_RTC; #else PM->APBAMASK.reg &= ~PM_APBAMASK_RTC; #endif } static inline void _rtc_set_enabled(bool on) { #ifdef REG_RTC_MODE2_CTRLA RTC->MODE2.CTRLA.bit.ENABLE = on; #else RTC->MODE2.CTRL.bit.ENABLE = on; #endif _wait_syncbusy(); } static inline void _rtt_reset(void) { #ifdef RTC_MODE0_CTRL_SWRST RTC->MODE0.CTRL.reg = RTC_MODE0_CTRL_SWRST; while (RTC->MODE0.CTRL.bit.SWRST) {} #else RTC->MODE0.CTRLA.reg = RTC_MODE2_CTRLA_SWRST; while (RTC->MODE0.CTRLA.bit.SWRST) {} #endif } #ifdef CPU_COMMON_SAMD21 static void _rtc_clock_setup(void) { /* Use 1024 Hz GCLK */ GCLK->CLKCTRL.reg = GCLK_CLKCTRL_CLKEN | GCLK_CLKCTRL_GEN(SAM0_GCLK_1KHZ) | GCLK_CLKCTRL_ID_RTC; while (GCLK->STATUS.bit.SYNCBUSY) {} } static void _rtt_clock_setup(void) { /* Use 32 kHz GCLK */ GCLK->CLKCTRL.reg = GCLK_CLKCTRL_CLKEN | GCLK_CLKCTRL_GEN(SAM0_GCLK_32KHZ) | GCLK_CLKCTRL_ID_RTC; while (GCLK->STATUS.bit.SYNCBUSY) {} } #else /* CPU_COMMON_SAMD21 - Clock Setup */ static void _rtc_clock_setup(void) { /* RTC source clock is external oscillator at 1kHz */ #if EXTERNAL_OSC32_SOURCE OSC32KCTRL->XOSC32K.bit.EN1K = 1; OSC32KCTRL->RTCCTRL.reg = OSC32KCTRL_RTCCTRL_RTCSEL_XOSC1K; /* RTC uses internal 32,768KHz Oscillator */ #elif INTERNAL_OSC32_SOURCE OSC32KCTRL->OSC32K.bit.EN1K = 1; OSC32KCTRL->RTCCTRL.reg = OSC32KCTRL_RTCCTRL_RTCSEL_OSC1K; /* RTC uses Ultra Low Power internal 32,768KHz Oscillator */ #elif ULTRA_LOW_POWER_INTERNAL_OSC_SOURCE OSC32KCTRL->RTCCTRL.reg = OSC32KCTRL_RTCCTRL_RTCSEL_ULP1K; #else #error "No clock source for RTC selected. " #endif } static void _rtt_clock_setup(void) { /* RTC source clock is external oscillator at 32kHz */ #if EXTERNAL_OSC32_SOURCE OSC32KCTRL->XOSC32K.bit.EN32K = 1; OSC32KCTRL->RTCCTRL.reg = OSC32KCTRL_RTCCTRL_RTCSEL_XOSC32K; /* RTC uses internal 32,768KHz Oscillator */ #elif INTERNAL_OSC32_SOURCE OSC32KCTRL->RTCCTRL.reg = OSC32KCTRL_RTCCTRL_RTCSEL_OSC32K; /* RTC uses Ultra Low Power internal 32,768KHz Oscillator */ #elif ULTRA_LOW_POWER_INTERNAL_OSC_SOURCE OSC32KCTRL->RTCCTRL.reg = OSC32KCTRL_RTCCTRL_RTCSEL_ULP32K; #else #error "No clock source for RTT selected. " #endif } #endif /* !CPU_COMMON_SAMD21 - Clock Setup */ static void _rtc_init(void) { #ifdef REG_RTC_MODE2_CTRLA if (RTC->MODE2.CTRLA.bit.MODE == RTC_MODE2_CTRLA_MODE_CLOCK_Val) { return; } _rtt_reset(); /* RTC config with RTC_MODE2_CTRL_CLKREP = 0 (24h) */ RTC->MODE2.CTRLA.reg = RTC_MODE2_CTRLA_PRESCALER_DIV1024 /* CLK_RTC_CNT = 1KHz / 1024 -> 1Hz */ | RTC_MODE2_CTRLA_CLOCKSYNC /* Clock Read Synchronization Enable */ | RTC_MODE2_CTRLA_MODE_CLOCK; #else if (RTC->MODE2.CTRL.bit.MODE == RTC_MODE2_CTRL_MODE_CLOCK_Val) { return; } _rtt_reset(); RTC->MODE2.CTRL.reg = RTC_MODE2_CTRL_PRESCALER_DIV1024 | RTC_MODE2_CTRL_MODE_CLOCK; #endif } void rtc_init(void) { _poweroff(); _rtc_clock_setup(); _poweron(); _rtc_init(); /* disable all interrupt sources */ RTC->MODE2.INTENCLR.reg = RTC_MODE2_INTENCLR_MASK; /* enable overflow interrupt */ RTC->MODE2.INTENSET.reg = RTC_MODE2_INTENSET_OVF; /* Clear interrupt flags */ RTC->MODE2.INTFLAG.reg = RTC_MODE2_INTFLAG_OVF | RTC_MODE2_INTFLAG_ALARM0; _rtc_set_enabled(1); NVIC_EnableIRQ(RTC_IRQn); } void rtt_init(void) { _rtt_clock_setup(); _poweron(); _rtt_reset(); /* set 32bit counting mode & enable the RTC */ #ifdef REG_RTC_MODE0_CTRLA RTC->MODE0.CTRLA.reg = RTC_MODE0_CTRLA_MODE(0) | RTC_MODE0_CTRLA_ENABLE | RTC_MODE0_CTRLA_COUNTSYNC | RTC_MODE0_PRESCALER; #else RTC->MODE0.CTRL.reg = RTC_MODE0_CTRL_MODE(0) | RTC_MODE0_CTRL_ENABLE | RTC_MODE0_PRESCALER; #endif _wait_syncbusy(); /* initially clear flag */ RTC->MODE0.INTFLAG.reg = RTC_MODE0_INTFLAG_CMP0 | RTC_MODE0_INTFLAG_OVF; NVIC_EnableIRQ(RTC_IRQn); } #if RTC_NUM_OF_TAMPERS static rtc_state_t tamper_cb; /* check if pin is a RTC tamper pin */ static int _rtc_pin(gpio_t pin) { for (unsigned i = 0; i < ARRAY_SIZE(rtc_tamper_pins); ++i) { if (rtc_tamper_pins[i] == pin) { return i; } } return -1; } void rtc_tamper_init(void) { if (IS_ACTIVE(MODULE_PERIPH_RTC) || IS_ACTIVE(MODULE_PERIPH_RTT) || _power_is_on()) { return; } _rtt_clock_setup(); _poweron(); /* disable all interrupt sources */ RTC->MODE0.INTENCLR.reg = RTC_MODE0_INTENCLR_MASK; NVIC_EnableIRQ(RTC_IRQn); } int rtc_tamper_register(gpio_t pin, gpio_flank_t flank) { int in = _rtc_pin(pin); if (in < 0) { return -1; } /* TAMPCTRL is enable-protected */ _rtc_set_enabled(0); RTC->MODE0.TAMPCTRL.reg |= RTC_TAMPCTRL_IN0ACT_WAKE << (2 * in); if (flank == GPIO_RISING) { RTC->MODE0.TAMPCTRL.reg |= RTC_TAMPCTRL_TAMLVL0 << in; } else if (flank == GPIO_FALLING) { RTC->MODE0.TAMPCTRL.reg &= ~(RTC_TAMPCTRL_TAMLVL0 << in); } /* enable the RTC again */ _rtc_set_enabled(1); return 0; } static void _unlock(void *m) { mutex_unlock(m); } void rtc_tamper_enable(void) { mutex_t m = MUTEX_INIT; /* clear tamper id */ RTC->MODE0.TAMPID.reg = 0xF; /* work around errata 2.17.4: * ignore the first tamper event on the rising edge */ if (RTC->MODE0.TAMPCTRL.reg & RTC_TAMPCTRL_TAMLVL_Msk) { mutex_lock(&m); tamper_cb.cb = _unlock; tamper_cb.arg = &m; } /* enable tamper detect as wake-up source */ RTC->MODE0.INTENSET.bit.TAMPER = 1; /* wait for first tamper event */ mutex_lock(&m); } #endif /* RTC_NUM_OF_TAMPERS */ void rtt_set_overflow_cb(rtt_cb_t cb, void *arg) { /* clear overflow cb to avoid race while assigning */ rtt_clear_overflow_cb(); /* set callback variables */ overflow_cb.cb = cb; overflow_cb.arg = arg; /* enable overflow interrupt */ RTC->MODE0.INTENSET.reg = RTC_MODE0_INTENSET_OVF; } void rtt_clear_overflow_cb(void) { /* disable overflow interrupt */ RTC->MODE0.INTENCLR.reg = RTC_MODE0_INTENCLR_OVF; } uint32_t rtt_get_counter(void) { _wait_syncbusy(); _read_req(); return RTC->MODE0.COUNT.reg; } void rtt_set_counter(uint32_t count) { RTC->MODE0.COUNT.reg = count; _wait_syncbusy(); } uint32_t rtt_get_alarm(void) { _wait_syncbusy(); return RTC->MODE0.COMP[0].reg; } int rtc_get_alarm(struct tm *time) { RTC_MODE2_ALARM_Type alarm; /* Read alarm register in one time */ alarm.reg = RTC->MODE2.Mode2Alarm[0].ALARM.reg; time->tm_year = alarm.bit.YEAR + reference_year; if ((time->tm_year < reference_year) || (time->tm_year > (reference_year + 63))) { return -1; } time->tm_mon = alarm.bit.MONTH - 1; time->tm_mday = alarm.bit.DAY; time->tm_hour = alarm.bit.HOUR; time->tm_min = alarm.bit.MINUTE; time->tm_sec = alarm.bit.SECOND; return 0; } int rtc_get_time(struct tm *time) { RTC_MODE2_CLOCK_Type clock; /* Read register in one time */ _read_req(); clock.reg = RTC->MODE2.CLOCK.reg; time->tm_year = clock.bit.YEAR + reference_year; if ((time->tm_year < reference_year) || (time->tm_year > (reference_year + 63))) { return -1; } time->tm_mon = clock.bit.MONTH - 1; time->tm_mday = clock.bit.DAY; time->tm_hour = clock.bit.HOUR; time->tm_min = clock.bit.MINUTE; time->tm_sec = clock.bit.SECOND; return 0; } int rtc_set_alarm(struct tm *time, rtc_alarm_cb_t cb, void *arg) { /* prevent old alarm from ringing */ rtc_clear_alarm(); /* normalize input */ rtc_tm_normalize(time); if ((time->tm_year < reference_year) || (time->tm_year > (reference_year + 63))) { return -2; } else { RTC->MODE2.Mode2Alarm[0].ALARM.reg = RTC_MODE2_ALARM_YEAR(time->tm_year - reference_year) | RTC_MODE2_ALARM_MONTH(time->tm_mon + 1) | RTC_MODE2_ALARM_DAY(time->tm_mday) | RTC_MODE2_ALARM_HOUR(time->tm_hour) | RTC_MODE2_ALARM_MINUTE(time->tm_min) | RTC_MODE2_ALARM_SECOND(time->tm_sec); RTC->MODE2.Mode2Alarm[0].MASK.reg = RTC_MODE2_MASK_SEL(6); } _wait_syncbusy(); /* Enable IRQ */ alarm_cb.cb = cb; alarm_cb.arg = arg; /* enable alarm interrupt and clear flag */ RTC->MODE2.INTFLAG.reg = RTC_MODE2_INTFLAG_ALARM0; RTC->MODE2.INTENSET.reg = RTC_MODE2_INTENSET_ALARM0; return 0; } int rtc_set_time(struct tm *time) { /* normalize input */ rtc_tm_normalize(time); if ((time->tm_year < reference_year) || (time->tm_year > reference_year + 63)) { return -1; } else { RTC->MODE2.CLOCK.reg = RTC_MODE2_CLOCK_YEAR(time->tm_year - reference_year) | RTC_MODE2_CLOCK_MONTH(time->tm_mon + 1) | RTC_MODE2_CLOCK_DAY(time->tm_mday) | RTC_MODE2_CLOCK_HOUR(time->tm_hour) | RTC_MODE2_CLOCK_MINUTE(time->tm_min) | RTC_MODE2_CLOCK_SECOND(time->tm_sec); } _wait_syncbusy(); return 0; } void rtt_set_alarm(uint32_t alarm, rtt_cb_t cb, void *arg) { /* disable interrupt to avoid race */ rtt_clear_alarm(); /* setup callback */ alarm_cb.cb = cb; alarm_cb.arg = arg; /* set COMP register */ RTC->MODE0.COMP[0].reg = alarm; _wait_syncbusy(); /* enable compare interrupt and clear flag */ RTC->MODE0.INTFLAG.reg = RTC_MODE0_INTFLAG_CMP0; RTC->MODE0.INTENSET.reg = RTC_MODE0_INTENSET_CMP0; } void rtc_clear_alarm(void) { /* disable alarm interrupt */ RTC->MODE2.INTENCLR.reg = RTC_MODE2_INTENCLR_ALARM0; } void rtt_clear_alarm(void) { /* disable compare interrupt */ RTC->MODE0.INTENCLR.reg = RTC_MODE0_INTENCLR_CMP0; } void rtc_poweron(void) { _poweron(); } void rtt_poweron(void) { _poweron(); } void rtc_poweroff(void) { _poweroff(); } void rtt_poweroff(void) { _poweroff(); } static void _isr_rtc(void) { if (!IS_ACTIVE(MODULE_PERIPH_RTC)) { return; } if (RTC->MODE2.INTFLAG.bit.ALARM0) { /* clear flag */ RTC->MODE2.INTFLAG.reg = RTC_MODE2_INTFLAG_ALARM0; if (alarm_cb.cb) { alarm_cb.cb(alarm_cb.arg); } } if (RTC->MODE2.INTFLAG.bit.OVF) { /* clear flag */ RTC->MODE2.INTFLAG.reg = RTC_MODE2_INTFLAG_OVF; /* At 1Hz, RTC goes till 63 years (2^5, see 17.8.22 in datasheet) * Start RTC again with reference_year 64 years more (Be careful with alarm set) */ reference_year += 64; } } static void _isr_rtt(void) { if (!IS_ACTIVE(MODULE_PERIPH_RTT)) { return; } if (RTC->MODE0.INTFLAG.bit.OVF) { RTC->MODE0.INTFLAG.reg = RTC_MODE0_INTFLAG_OVF; if (overflow_cb.cb) { overflow_cb.cb(overflow_cb.arg); } } if (RTC->MODE0.INTFLAG.bit.CMP0) { /* clear flag */ RTC->MODE0.INTFLAG.reg = RTC_MODE0_INTFLAG_CMP0; /* disable interrupt */ RTC->MODE0.INTENCLR.reg = RTC_MODE0_INTENCLR_CMP0; if (alarm_cb.cb) { alarm_cb.cb(alarm_cb.arg); } } } static void _isr_tamper(void) { #ifdef RTC_MODE0_INTFLAG_TAMPER if (RTC->MODE0.INTFLAG.bit.TAMPER) { RTC->MODE0.INTFLAG.reg = RTC_MODE0_INTFLAG_TAMPER; if (tamper_cb.cb) { tamper_cb.cb(tamper_cb.arg); } } #endif } void isr_rtc(void) { _isr_rtc(); _isr_rtt(); _isr_tamper(); cortexm_isr_end(); }