/* * Copyright (C) 2017 Kaspar Schleiser * 2014 FU Berlin * 2018 Inria * 2018 HAW Hamburg * * This file is subject to the terms and conditions of the GNU Lesser * General Public License v2.1. See the file LICENSE in the top level * directory for more details. */ /** * @ingroup cpu_stm32 * @ingroup drivers_periph_i2c * @{ * * @file * @brief Low-level I2C driver implementation * * This driver supports the STM32 F1, F2, L1, and F4 families. * * @note This implementation only implements the 7-bit addressing polling mode. * * @author Peter Kietzmann * @author Hauke Petersen * @author Thomas Eichinger * @author Kaspar Schleiser * @author Toon Stegen * @author Vincent Dupont * @author Víctor Ariño * @author Alexandre Abadie * @author Kevin Weiss * * @} */ #include #include #include #include "cpu.h" #include "mutex.h" #include "pm_layered.h" #include "panic.h" #include "periph/i2c.h" #include "periph/gpio.h" #include "periph_conf.h" /* Some DEBUG statements may cause delays that alter i2c functionality. * E.g. on STM32F1 the delay can cause issues in the state machine that * prevent communication. Using faster stdio than UART can mitigate this. */ #define ENABLE_DEBUG 0 #include "debug.h" #define TICK_TIMEOUT (0xFFFF) #define I2C_IRQ_PRIO (1) #define I2C_FLAG_READ (I2C_READ) #define I2C_FLAG_WRITE (0) #define ERROR_FLAG (I2C_SR1_AF | I2C_SR1_ARLO | I2C_SR1_BERR) /* static function definitions */ static void _init(i2c_t dev); static void _i2c_init(I2C_TypeDef *i2c, uint32_t clk, uint32_t ccr); static int _i2c_start(I2C_TypeDef *dev, uint8_t address_byte, uint8_t flags, size_t length); static int _stop(I2C_TypeDef *dev); static int _is_sr1_mask_set(I2C_TypeDef *i2c, uint32_t mask, uint8_t flags); static inline int _wait_for_bus(I2C_TypeDef *i2c); static void _init_pins(i2c_t dev); static void _deinit_pins(i2c_t dev); static void _disable_periph(i2c_t dev); static void _enable_periph(i2c_t dev); /** * @brief Array holding one pre-initialized mutex for each I2C device */ static mutex_t locks[I2C_NUMOF]; void i2c_init(i2c_t dev) { assert(dev < I2C_NUMOF); mutex_init(&locks[dev]); assert(i2c_config[dev].dev != NULL); periph_clk_en(i2c_config[dev].bus, i2c_config[dev].rcc_mask); NVIC_SetPriority(i2c_config[dev].irqn, I2C_IRQ_PRIO); NVIC_EnableIRQ(i2c_config[dev].irqn); _init(dev); #if defined(CPU_FAM_STM32F4) /* make sure the analog filters don't hang -> see errata sheet 2.14.7 */ if (i2c_config[dev].dev->SR2 & I2C_SR2_BUSY) { /* disable peripheral */ i2c_config[dev].dev->CR1 &= ~I2C_CR1_PE; /* toggle both pins to reset analog filter */ gpio_init(i2c_config[dev].scl_pin, GPIO_OD); gpio_init(i2c_config[dev].sda_pin, GPIO_OD); gpio_set(i2c_config[dev].sda_pin); gpio_set(i2c_config[dev].scl_pin); gpio_clear(i2c_config[dev].sda_pin); gpio_clear(i2c_config[dev].scl_pin); gpio_set(i2c_config[dev].sda_pin); gpio_set(i2c_config[dev].scl_pin); _init(dev); } #endif _disable_periph(dev); } static void _init_pins(i2c_t dev) { /* configure pins */ #ifdef CPU_FAM_STM32F1 /* This is needed in case the remapped pins are used */ if (i2c_config[dev].scl_pin == GPIO_PIN(PORT_B, 8) || i2c_config[dev].sda_pin == GPIO_PIN(PORT_B, 9)) { /* The remapping periph clock must first be enabled */ RCC->APB2ENR |= RCC_APB2ENR_AFIOEN; /* Then the remap can occur */ afio_mapr_write(afio_mapr_read() | AFIO_MAPR_I2C1_REMAP); } gpio_init_af(i2c_config[dev].scl_pin, GPIO_AF_OUT_OD); gpio_init_af(i2c_config[dev].sda_pin, GPIO_AF_OUT_OD); #else gpio_init(i2c_config[dev].scl_pin, GPIO_OD_PU); gpio_init(i2c_config[dev].sda_pin, GPIO_OD_PU); gpio_init_af(i2c_config[dev].scl_pin, i2c_config[dev].scl_af); gpio_init_af(i2c_config[dev].sda_pin, i2c_config[dev].sda_af); #endif } static void _deinit_pins(i2c_t dev) { /* Releasing pins as open drain and as set, so that the pull ups can pull * the signal high. If we would release the pins as push-pull output, this * could be unpleasant when an I2C device drives the signal low (e.g. for * clock stretching) while the MCU would driving the same signal high. */ gpio_set(i2c_config[dev].scl_pin); gpio_set(i2c_config[dev].sda_pin); gpio_init(i2c_config[dev].scl_pin, GPIO_OD); gpio_init(i2c_config[dev].sda_pin, GPIO_OD); } static void _disable_periph(i2c_t dev) { /* Clearing PE will not abort ongoing transfer, but only kick in when any * current transfer is done. So we can do this at any point in time */ i2c_config[dev].dev->CR1 &= ~(I2C_CR1_PE); /* Wait for bus being cleared */ _wait_for_bus(i2c_config[dev].dev); /* On STM32F1: Detach pins from I2C peripheral before disabling the clock * to it, otherwise SCL and SDA will be driven down and lots of battery * charge is used to heat up the pull up resistors */ if (IS_ACTIVE(CPU_FAM_STM32F1)) { _deinit_pins(dev); } /* Finally, disable the clock to the I2C peripheral */ periph_clk_dis(i2c_config[dev].bus, i2c_config[dev].rcc_mask); } static void _enable_periph(i2c_t dev) { /* First, clock the I2C peripheral so that registers can be written to */ periph_clk_en(i2c_config[dev].bus, i2c_config[dev].rcc_mask); /* On STM32F1: We had to detach pins to work around a h/w limitations, so * re-attach them now */ if (IS_ACTIVE(CPU_FAM_STM32F1)) { _init_pins(dev); } /* Finally: Enable peripheral again */ i2c_config[dev].dev->CR1 |= I2C_CR1_PE; } static void _i2c_init(I2C_TypeDef *i2c, uint32_t clk, uint32_t ccr) { /* disable device and set ACK bit */ i2c->CR1 = I2C_CR1_ACK; /* configure I2C clock */ i2c->CR2 = (clk / 1000000) | I2C_CR2_ITERREN; i2c->CCR = ccr; i2c->TRISE = (clk / 1000000) + 1; /* configure device */ /* configure device */ i2c->OAR1 |= (1 << 14); /* datasheet: bit 14 should be kept 1 */ i2c->OAR1 &= ~I2C_OAR1_ADDMODE; /* make sure we are in 7-bit address mode */ /* Clear flags */ i2c->SR1 &= ~ERROR_FLAG; /* enable device */ i2c->CR1 |= I2C_CR1_PE; } static void _init(i2c_t dev) { I2C_TypeDef *i2c = i2c_config[dev].dev; uint32_t ccr = 0; /* read speed configuration */ switch (i2c_config[dev].speed) { case I2C_SPEED_LOW: /* 10Kbit/s */ ccr = i2c_config[dev].clk / 20000; break; case I2C_SPEED_NORMAL: /* 100Kbit/s */ ccr = i2c_config[dev].clk / 200000; break; case I2C_SPEED_FAST: ccr = i2c_config[dev].clk / 800000; break; } /* make peripheral soft reset */ i2c->CR1 |= I2C_CR1_SWRST; _init_pins(dev); i2c->CR1 &= ~I2C_CR1_SWRST; /* configure device */ _i2c_init(i2c, i2c_config[dev].clk, ccr); /* go to low power */ _disable_periph(dev); } void i2c_acquire(i2c_t dev) { assert(dev < I2C_NUMOF); mutex_lock(&locks[dev]); #ifdef STM32_PM_STOP /* block STOP mode */ pm_block(STM32_PM_STOP); #endif _enable_periph(dev); } void i2c_release(i2c_t dev) { assert(dev < I2C_NUMOF); _disable_periph(dev); #ifdef STM32_PM_STOP /* unblock STOP mode */ pm_unblock(STM32_PM_STOP); #endif mutex_unlock(&locks[dev]); } int i2c_read_bytes(i2c_t dev, uint16_t address, void *data, size_t length, uint8_t flags) { assert(dev < I2C_NUMOF); I2C_TypeDef *i2c = i2c_config[dev].dev; DEBUG_PUTS("[i2c] i2c_read_bytes(): Starting"); /* Do not support repeated start reading * The repeated start read requires the bus to be busy (I2C_SR2_BUSY == 1) * the previous R/W state to be a read (I2C_SR2_TRA == 0) * and for the command not to be split frame (I2C_NOSTART == 0) */ if (((i2c->SR2 & (I2C_SR2_BUSY | I2C_SR2_TRA)) == I2C_SR2_BUSY) && !(flags & I2C_NOSTART)) { return -EOPNOTSUPP; } int ret = _i2c_start(i2c, (address << 1) | I2C_FLAG_READ, flags, length); if (ret < 0) { if (ret == -ETIMEDOUT) { _init(dev); } return ret; } for (size_t i = 0; i < length; i++) { if (i + 1 == length && !(flags & I2C_NOSTOP)) { /* If data is already in the buffer we must clear before sending a stop. If I2C_NOSTOP was called up to two extra bytes may be clocked out on the line however they get ignored in the firmware.*/ if ((i2c->SR1 & I2C_SR1_RXNE) && (length == 1)) { ((uint8_t*)data)[i] = i2c->DR; return _stop(i2c); } /* Stop must also be sent before final read */ ret = _stop(i2c); if (ret < 0) { return ret; } } /* Wait for reception to complete */ ret = _is_sr1_mask_set(i2c, I2C_SR1_RXNE, flags); if (ret < 0) { DEBUG_PUTS("[i2c] i2c_read_bytes(): Waiting for I2C_SR1_RXNE failed"); return ret; } ((uint8_t*)data)[i] = i2c->DR; } DEBUG_PUTS("[i2c] i2c_read_bytes(): Finished reading bytes"); if (flags & I2C_NOSTOP) { return 0; } return _wait_for_bus(i2c); } int i2c_write_bytes(i2c_t dev, uint16_t address, const void *data, size_t length, uint8_t flags) { assert(dev < I2C_NUMOF); int ret; I2C_TypeDef *i2c = i2c_config[dev].dev; assert(i2c != NULL); DEBUG_PUTS("[i2c] i2c_write_bytes(): Starting"); /* Length is 0 in start since we don't need to preset the stop bit */ ret = _i2c_start(i2c, (address << 1) | I2C_FLAG_WRITE, flags, 0); if (ret < 0) { if (ret == -ETIMEDOUT) { _init(dev); } return ret; } /* Send out data bytes */ for (size_t i = 0; i < length; i++) { DEBUG_PUTS("[i2c] i2c_write_bytes(): Waiting for TX reg to be free"); ret = _is_sr1_mask_set(i2c, I2C_SR1_TXE, flags); if (ret < 0) { DEBUG_PUTS("[i2c] i2c_write_bytes(): Waiting for I2C_SR1_TXE failed"); return ret; } DEBUG_PUTS("[i2c] i2c_write_bytes(): TX is free so send byte"); i2c->DR = ((uint8_t*)data)[i]; } /* Wait for tx reg to be empty so other calls will no interfere */ ret = _is_sr1_mask_set(i2c, I2C_SR1_TXE, flags); if (ret < 0) { DEBUG_PUTS("[i2c] i2c_write_bytes(): Waiting for I2C_SR1_TXE failed"); return ret; } if (flags & I2C_NOSTOP) { return 0; } else { /* End transmission */ DEBUG_PUTS("[i2c] i2c_write_bytes(): Ending transmission"); ret = _stop(i2c); if (ret < 0) { return ret; } DEBUG_PUTS("[i2c] i2c_write_bytes(): STOP condition was send out"); } return _wait_for_bus(i2c); } static int _i2c_start(I2C_TypeDef *i2c, uint8_t address_byte, uint8_t flags, size_t length) { assert(i2c != NULL); if ((flags & I2C_ADDR10) || (!(i2c->SR2 & I2C_SR2_BUSY) && (flags & I2C_NOSTART))) { return -EOPNOTSUPP; } /* Clear flags */ i2c->SR1 &= ~ERROR_FLAG; if (!(flags & I2C_NOSTART)) { DEBUG_PUTS("[i2c] _i2c_start(): Generate start condition"); /* Generate start condition */ i2c->CR1 |= I2C_CR1_START | I2C_CR1_ACK; /* Wait for SB flag to be set */ int ret = _is_sr1_mask_set(i2c, I2C_SR1_SB, flags & ~I2C_NOSTOP); if (ret < 0) { DEBUG_PUTS("[i2c] _i2c_start(): Waiting for I2C_SR1_SB failed"); return ret; } DEBUG_PUTS("[i2c] _i2c_start(): Start condition generated"); DEBUG_PUTS("[i2c] _i2c_start(): Generating address"); /* Send address and read/write flag */ i2c->DR = (address_byte); if (!(flags & I2C_NOSTOP) && length == 1) { i2c->CR1 &= ~(I2C_CR1_ACK); } /* Wait for ADDR flag to be set */ ret = _is_sr1_mask_set(i2c, I2C_SR1_ADDR, flags & ~I2C_NOSTOP); if (ret == -EIO) { /* Since NACK happened during start it means no device connected */ DEBUG_PUTS("[i2c] _i2c_start(): Address NACKED"); return -ENXIO; } /* Needed to clear address bit */ i2c->SR2; if (!(flags & I2C_NOSTOP) && length == 1) { /* Stop must also be sent before final read */ i2c->CR1 |= (I2C_CR1_STOP); } if (ret) { DEBUG_PUTS("[i2c] _i2c_start(): Waiting for I2C_SR1_ADDR failed"); } else { DEBUG_PUTS("[i2c] _i2c_start(): Address generated"); } return ret; } return 0; } static int _is_sr1_mask_set(I2C_TypeDef *i2c, uint32_t mask, uint8_t flags) { DEBUG("[i2c] _is_sr1_mask_set: waiting to set %04X\n", (uint16_t)mask); uint16_t tick = TICK_TIMEOUT; while (tick--) { uint32_t sr1 = i2c->SR1; if (sr1 & I2C_SR1_AF) { DEBUG_PUTS("[i2c] _is_sr1_mask_set(): NACK received"); i2c->SR1 &= ~ERROR_FLAG; if (!(flags & I2C_NOSTOP)) { _stop(i2c); } return -EIO; } if ((sr1 & I2C_SR1_ARLO) || (sr1 & I2C_SR1_BERR)) { DEBUG_PUTS("[i2c] _is_sr1_mask_set(): arb lost or bus ERROR_FLAG"); i2c->SR1 &= ~ERROR_FLAG; _stop(i2c); return -EAGAIN; } if (sr1 & mask) { i2c->SR1 &= ~ERROR_FLAG; return 0; } } /* * If timeout occurs this means a problem that must be handled on a higher * level. A SWRST is recommended by the datasheet. */ i2c->SR1 &= ~ERROR_FLAG; _stop(i2c); DEBUG_PUTS("[i2c] _is_sr1_mask_set(): Timed out"); return -ETIMEDOUT; } static int _stop(I2C_TypeDef *i2c) { /* send STOP condition */ DEBUG_PUTS("[i2c] _stop(): Generate stop condition"); i2c->CR1 &= ~(I2C_CR1_ACK); i2c->CR1 |= I2C_CR1_STOP; uint16_t tick = TICK_TIMEOUT; while ((i2c->CR1 & I2C_CR1_STOP) && tick--) {} if (!tick) { DEBUG_PUTS("[i2c] _stop(): Stop condition timed out"); return -ETIMEDOUT; } DEBUG_PUTS("[i2c] _stop(): Stop condition succeeded"); if (_wait_for_bus(i2c) < 0) { DEBUG_PUTS("[i2c] _stop(): Bus free timed out"); return -ETIMEDOUT; } DEBUG_PUTS("[i2c] _stop(): Bus is free"); return 0; } static inline int _wait_for_bus(I2C_TypeDef *i2c) { uint16_t tick = TICK_TIMEOUT; while ((i2c->SR2 & I2C_SR2_BUSY) && tick--) {} if (!tick) { DEBUG_PUTS("[i2c] _wait_for_bus(): Timed out"); return -ETIMEDOUT; } return 0; } #if I2C_0_ISR || I2C_1_ISR static inline void irq_handler(i2c_t dev) { assert(dev < I2C_NUMOF); I2C_TypeDef *i2c = i2c_config[dev].dev; assert(i2c != NULL); unsigned state = i2c->SR1; DEBUG_PUTS("\n\n### I2C ERROR OCCURRED ###"); DEBUG("status: %08x\n", state); if (state & I2C_SR1_OVR) { DEBUG_PUTS("OVR"); } if (state & I2C_SR1_AF) { DEBUG_PUTS("AF"); } if (state & I2C_SR1_ARLO) { DEBUG_PUTS("ARLO"); } if (state & I2C_SR1_BERR) { DEBUG_PUTS("BERR"); } if (state & I2C_SR1_PECERR) { DEBUG_PUTS("PECERR"); } if (state & I2C_SR1_TIMEOUT) { DEBUG_PUTS("TIMEOUT"); } if (state & I2C_SR1_SMBALERT) { DEBUG_PUTS("SMBALERT"); } core_panic(PANIC_GENERAL_ERROR, "I2C FAULT"); } #endif #if I2C_0_ISR void I2C_0_ISR(void) { irq_handler(I2C_DEV(0)); } #endif /* I2C_0_ISR */ #if I2C_1_ISR void I2C_1_ISR(void) { irq_handler(I2C_DEV(1)); } #endif /* I2C_1_ISR */