/* * Copyright (C) 2018 Gunar Schorcht * * This file is subject to the terms and conditions of the GNU Lesser * General Public License v2.1. See the file LICENSE in the top level * directory for more details. */ /** * @defgroup drivers_l3gxxxx L3Gxxxx 3-axis gyroscope sensor family * @ingroup drivers_sensors * @ingroup drivers_saul * @brief Device Driver for ST L3Gxxxx 3-axis gyroscope sensor family * * \section l3gxxxx Driver for ST L3Gxxxx 3-axis gyroscope sensor family * * ## Table of contents {#l3gxxxx_toc} * * 1. [Overview](#l3gxxxx_overview) * 1. [About the sensor](#l3gxxxx_about) * 2. [Supported features](#l3gxxxx_supported) * 2. [Measurement Process](#l3gxxxx_measurement_process) * 1. [Sensor modes](#l3gxxxx_sensor_modes) * 2. [Output Data Rates and Filters](#l3gxxxx_odr_filters) * 3. [Using the driver (basic functionality)](#l3gxxxx_using_driver) * 1. [Initializaton](#l3gxxxx_initialization) * 2. [Output data format](#l3gxxxx_output_data) * 3. [Fetching data](#l3gxxxx_fetching_data) * 4. [Using the FIFO](#l3gxxxx_fifo) * 1. [Configuration of the FIFO](#l3gxxxx_fifo_config) * 2. [Reading data from the FIFO](#l3gxxxx_fifo_read_data) * 5. [Using Interrupts](#l3gxxxx_interrupts) * 1. [Data interrupts (data ready and FIFO status) on signal `INT2/DRDY`] * (#l3gxxxx_data_interrupt) * 2. [Event interrupts (Axes movement and wake-up) on signal `INT1`] * (#l3gxxxx_event_interrupt) * 3. [Interrupt context problem](#l3gxxxx_interrupt_context) * 4. [Interrupt signal properties](#l3gxxxx_interrupt_signal) * 6. [Power Saving](#l3gxxxx_power_saving) * 7. [Low level functions](#l3gxxxx_low_level) * 8. [Default configuration](#l3gxxxx_default_configuration) * * # Overview {#l3gxxxx_overview} * * ## About the sensor {#l3gxxxx_about} * * ST L3Gxxxx sensors are low-power **3-axis angular rate sensors** connected * to **I2C** or **SPI** with a full scale of up to **2000 dps**. It supports * different measuring rates with a user selectable bandwidth. * * **Main features** of the sensor are: * - 3 selectable full scales of ±245, ±500, and ±2000 dps * - 7 measuring rates from 12.5 Hz to 800 Hz with 4 bandwidths * - 16 bit angular rate value data output * - 2 dedicated interrupt signals for data and event interrupts * - integrated high-pass filters with 3 modes and 10 different cutoff * frequencies * - embedded temperature sensor with 8 bit data output * - embedded 32 levels of 16 bit data output FIFO * - I2C and SPI digital interface * - embedded power-down and sleep mode with fast power-on and wake-up * * [Back to Table of Contents](#l3gxxxx_toc) * * ## Supported Features {#l3gxxxx_supported} * * The driver supports the following sensors of the L3Gxxxx 3-axis gyro sensor * family. Used sensor variant has to be specified by using the respective * pseudomodule. * *
* | Sensor Variant | Pseudomodule | Vendor Status | * |:-----------------|:--------------|:--------------------------------| * | L3GD20H | `l3gd20h` | Not recommended for new designs | * | L3GD20 | `l3gd20` | Obsolete | * | L3G4200D | `l3g4200_ng` | Obsolete | * | A3G4250D | `a3g4250d` | Active | * | I3G4250D | `i3g4250d` | Active | *

* * The driver is modular and supports different levels of functionality, which * can be enabled using pseudomodules according to the requirements of the * application. This ensures that the driver only uses as much ROM * and RAM as really needed. * * As basic functionality the driver supports * - a static configuration of the sensor by a default configuration parameter * set of type #l3gxxxx_params_t as defined in the file l3gxxxx_params.h * - the polling of raw output data or angular rates in millidegrees per * second (mdps) * - the power-down and power-up of the sensor * - the use of the I2C or SPI interface * * The following pseudomodules are used to enable additional functionalities: *
* | Pseudomodule | Functionality | * |:--------------------|:--------------------------------------------------------| * | `l3gxxxx_i2c` | I2C interface enabled | * | `l3gxxxx_spi` | SPI interface enabled | * | `l3gxxxx_low_odr` | Low output data rates enabled (L3GD20H only) | * | `l3gxxxx_fifo` | 32 level FIFO enabled | * | `l3gxxxx_irq_data` | Data interrupt (`INT2/DRDY`) handling enabled | * | `l3gxxxx_irq_event` | Event interrupt (`INT1`) handling enabled | * | `l3gxxxx_sleep` | Sleep and wake-up functions enabled | * | `l3gxxxx_config` | Functions for changing configurations at runtime nabled | *

* * The following table shows the mapping of which modules have to be used * to enable which functions of the L3Gxxxx. * *
* | Feature | Module | * |:------------------------------------------------------------- |:--------------------| * | 16 bit angular rate data output (raw and angular rate) | `l3gxxxx` | * | Full scales of ±245, ±500, and ±2000 dps | `l3gxxxx` | * | Using high-pass filter (HPF) and low-pass filter (LPF1/LPF2) | `l3gxxxx` | * | Output data rates (ODR) from 100 Hz to 800 Hz | `l3gxxxx` | * | Output data rates (ODR) from 12.5 Hz to 50 Hz (L3GD20H only) | `l3gxxxx_low_odr` | * | Polling data | `l3gxxxx` | * | SAUL sensor interface | `l3gxxxx` | * | Power-down and power-up functionality | `l3gxxxx` | * | Sleep and wake-up functionality | `l3gxxxx_sleep` | * | 32 level FIFO handling | `l3gxxxx_fifo` | * | Data interrupt (`INT2/DRDY`) handling (data ready and FIFO) | `l3gxxxx_irq_data` | * | Event interrupt (`INT1`) handling (Axes movement and wake-up) | `l3gxxxx_irq_event` | * | Configuration of all sensor functions at runtime | `l3gxxxx_config` | * | I2C interface | `l3gxxxx_i2c` | * | SPI interface (SPI mode 3) | `l3gxxxx_spi` | *

* * @note * - Multiple L3Gxxxx sensors of same type with both SPI and I2C interfaces * can be used simultaneously. If neither the I2C nor the SPI interface * are enabled by using the modules `l3gxxxx_i2c` or `l3gxxxx_spi`, * the I2C interface is used by default.
*
* - In default configuration, the sensor is configured with * an output data rate (ODR) of 100 Hz with a LPF2 cutoff frequency * of 25 Hz (#L3GXXXX_ODR_100_25) and a full scale of 245 dps * (#L3GXXXX_SCALE_245_DPS). The data are filtered with HPF and LPF2, * where the HPF is used in normal mode with reset (#L3GXXXX_HPF_NORMAL) * and a cutoff frequency of 8 Hz (see #l3gxxxx_config_hpf).
*
* This configuration can either be changed by overriding default * parameters #CONFIG_L3GXXXX_ODR, #CONFIG_L3GXXXX_SCALE, * #CONFIG_L3GXXXX_FILTER_SEL, #CONFIG_L3GXXXX_HPF_MODE and * #CONFIG_L3GXXXX_HPF_CUTOFF or by using functions #l3gxxxx_set_mode, * #l3gxxxx_set_scale, #l3gxxxx_select_output_filter, #l3gxxxx_config_hpf * if module `l3gxxxx_config` is enabled.
*
* - If module 'l3gxxxx_fifo' is used, the FIFO is enabled in mode * #L3GXXXX_FIFO with a watermark level (threshold) of 23, i.e. the * interrupt #L3GXXXX_INT_FIFO_WATERMARK is triggered (if enabled) when * the 24th sample is stored in the FIFO.
*
* This configuration can be changed either by overriding the default * configuration parameters #CONFIG_L3GXXXX_FIFO_MODE and * #CONFIG_L3GXXXX_FIFO_WATERMARK or by function #l3gxxxx_set_fifo_mode * if module `l3gxxxx_config` is used.
*
* - If the handling of data interrupts on signal `INT2/DRDY` is * enabled by module `l3gxxxx_irq_data`, it depends on whether module * `l3gxxxx_fifo` is used, which data interrupts are enabled * by default. If `l3gxxxx_fifo` is used, #L3GXXXX_INT_FIFO_WATERMARK and * #L3GXXXX_INT_FIFO_OVERRUN interrupts are enabled by default. Otherwise * only #L3GXXXX_INT_DATA_READY is enabled by default.
*
* This configuration can be changed using function #l3gxxxx_enable_int.
*
* - If the handling of event interrupts on signal `INT1` is enabled * by module `l3gxxxx_irq_event`, the high event interrupt is enabled by * default for all axes. This means that for each individual axis an * interrupt is generated when the absolute value of its angular rate * exceeds a threshold value of ~30 dps (high event).
*
* The axis data are filtered with HPF and LPF2. The interrupt signal * `INT1` is triggered when the data for one axis becomes greater than * the specified threshold (OR condition). The interrupt is latched * by default.
*
* This configuration can be changed either by overriding the default * configuration parameters #CONFIG_L3GXXXX_INT1_X_THRESH, * #CONFIG_L3GXXXX_INT1_Y_THRESH, #CONFIG_L3GXXXX_INT1_Z_THRESH, * #CONFIG_L3GXXXX_INT1_X_LT_THRESH, #CONFIG_L3GXXXX_INT1_X_GT_THRESH, * #CONFIG_L3GXXXX_INT1_Y_LT_THRESH, #CONFIG_L3GXXXX_INT1_Y_GT_THRESH, * #CONFIG_L3GXXXX_INT1_Z_LT_THRESH, #CONFIG_L3GXXXX_INT1_Z_GT_THRESH, * #CONFIG_L3GXXXX_INT1_FILTER, #CONFIG_L3GXXXX_INT1_AND and * #CONFIG_L3GXXXX_INT1_LATCH or at runtime using function * #l3gxxxx_set_int_event_cfg function.
*
* The `INT1` signal is a HIGH active push/pull output. * * [Back to Table of Contents](#l3gxxxx_toc) * * # Measurement Process {#l3gxxxx_measurement_process} * * ## Sensor modes {#l3gxxxx_sensor_modes} * * L3Gxxxx sensors provide different operating modes. * * - **Power-down mode** is configured automatically after power up boot * sequence. In this mode, all gyros are switched off. Therefore, it takes * up to 100 ms to switch to another mode. The power consumption in this mode * is about 1 uA. * * - **Normal mode** is the normal measurement mode. All gyros are switched on * and at least one axis is enabled for measurements. Measurements are * performed at a defined output data rate (**ODR**). The power consumption * in this mode is about 5 mA. * * - **Sleep mode** is the normal mode when no axes era enabled for * measurement. In this modes, all gyros are kept switched on. Therefore, * it only takes 1/ODR to switch to normal mode if low pass filtering is * disabled or 6/ODR if low pass filtering is enabled. The power consumption * in this mode is about 2.5 mA. * * [Back to Table of Contents](#l3gxxxx_toc) * * ## Output Data Rates and Filters {#l3gxxxx_odr_filters} * * In normal mode, measurements are performed at a defined output rate (ODR) * with a user selectable bandwidth. * * ### Used filter selection * * L3Gxxxx sensors integrate a combination * of two low pass filters (LPF) and one high pass filter (HPF). * * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ * +---------------> L3GXXXX_NO_FILTER * | +----- + * +------------+--->| |---> L3GXXXX_LPF2_ONLY * | | LPF2 | * +-----+ +------+ | +-----+ +--->| |---> L3GXXXX_HPF_AND_LPF2 * | | | | | | | | +------+ * | ADC |-->| LPF1 |--+-->| HPF |--+---------------> L3GXXXX_HPF_ONLY * | | | | | | * +-----+ +------+ +-----+ * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ * * First, raw sensor data are always filtered by LPF1 with a cutoff frequency * that is fixed for the selected output data rate (ODR), see #l3gxxxx_odr_t. * Resulting data can then optionally be filtered by HPF and/or LPF2. Both * filters can be used or bypassed. * * The figure above shows possible **filter selections** and the driver symbols * defined by #l3gxxxx_filter_sel_t. These can be used to set the filter * combination separately for the output data and the data for event interrupt * generation. * *
* | Driver symbol | High pass filter (HPF) used | Low pass filter 2 (LPF2) used | * |:----------------------|:---------------------------:|:------------------------------: * | #L3GXXXX_NO_FILTER | - | - | * | #L3GXXXX_HPF_ONLY | x | - | * | #L3GXXXX_LPF2_ONLY | - | x | * | #L3GXXXX_HPF_AND_LPF2 | x | x | *

* * The default filter selection for the output data is #L3GXXXX_HPF_AND_LPF2 * and is defined by the default configuration parameter * #CONFIG_L3GXXXX_FILTER_SEL. If the module `l3gxxxx_config` is used, it can * be changed at runtime using function #l3gxxxx_select_output_filter. * * The default filter selection for event interrupt generation is * #L3GXXXX_HPF_AND_LPF2 and is defined by default configuration parameter * #CONFIG_L3GXXXX_INT1_FILTER. It can be changed at runtime with function * #l3gxxxx_set_int_event_cfg. * * @note Since same filters are used for the output data as well as the * data used for event interrupt generation (selective axes movement / wake-up), * the configuration of the filters always affects both data. If the HPF is * enabled for filtering the output data, it is also active for filtering the * sensor data used for interrupt generation if the LPF2 is enabled for * interrupt generation. The other way around, the HPF is also active for * filtering the output data when it is enabled for interrupt generation and * when the LPF2 is enabled for the output data. * * ### High pass filter mode * * The high pass filter (HPF) can be used in different modes. * *
* | Driver symbol | HPF mode | * |:-----------------------|:------------------------| * | #L3GXXXX_HPF_NORMAL | Normal mode | * | #L3GXXXX_HPF_REFERENCE | Reference mode | * | #L3GXXXX_HPF_AUTORESET | Auto-reset on interrupt | *

* * In normal mode, the HPF can be reset by reading the REFERENCE * register, which instantly deletes the DC component * of the angular rate. In reference mode, output data are the difference * of raw sensor data and the contents of the REFERENCE register. In autoreset * mode, HPF is automatically reset when a configured event interrupt occurs. * * The default HPF mode is #L3GXXXX_HPF_NORMAL and is defined by the * default configuration parameter #CONFIG_L3GXXXX_HPF_MODE. If module * `l3gxxxx_config` is used, it can be changed at runtime using * function #l3gxxxx_config_hpf. * * ### Output data rates and filter cutoff frequencies * * The cutoff frequencies of LPF1 and LPF2 are determined by used output * data rate #l3gxxxx_odr_t. The following **output data rates (ODR)** * and the LPF1/LPF2 cutoff frequencies are defined * (Reference: Application Note AN4506): * *
* | Mode | ODR [Hz] | LPF1 cutoff [Hz] | LPF2 cutoff [Hz] | Driver symbol | * |:------- |:--------:|:----------------:|:----------------:|:---------------------| * | Normal | 100 | 32 | 12.5 | #L3GXXXX_ODR_100_12 | * | Normal | 100 | 32 | 25 | #L3GXXXX_ODR_100_25 | * | Normal | 200 | 63.3 | 12.5 | #L3GXXXX_ODR_200_12 | * | Normal | 200 | 63.3 | 25 | #L3GXXXX_ODR_200_25 | * | Normal | 200 | 63.3 | 50 | #L3GXXXX_ODR_200_50 | * | Normal | 200 | 63.3 | 70 | #L3GXXXX_ODR_200_70 | * | Normal | 400 | 128 | 20 | #L3GXXXX_ODR_400_20 | * | Normal | 400 | 128 | 25 | #L3GXXXX_ODR_400_25 | * | Normal | 400 | 128 | 50 | #L3GXXXX_ODR_400_50 | * | Normal | 400 | 128 | 110 | #L3GXXXX_ODR_400_110 | * | Normal | 800 | 211 | 30 | #L3GXXXX_ODR_800_30 | * | Normal | 800 | 211 | 35 | #L3GXXXX_ODR_800_35 | * | Normal | 800 | 211 | 30 | #L3GXXXX_ODR_800_30 | * | Normal | 800 | 211 | 100 | #L3GXXXX_ODR_800_100 | * | Low ODR | 12.5 | 3.9 | - | #L3GXXXX_ODR_12 | * | Low ODR | 25 | 7.8 | - | #L3GXXXX_ODR_25 | * | Low ODR | 50 | 16 | 16.6 | #L3GXXXX_ODR_50 | *

* * @note Low ODRs are only available on L3GD20H and if module `l3gxxxx_low_odr` * is used. * * The default output data rate (ODR) is #L3GXXXX_ODR_100_12 and defined by * the default configuration parameter #CONFIG_L3GXXXX_ODR. If module * `l3gxxxx_config` is used, it can be changed at runtime using * function #l3gxxxx_set_mode, for example: * * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~{.c} * l3gxxxx_set_mode(&dev, L3GXXXX_ODR_400_20, true, true, false); * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ * * The **cutoff frequencies** of the HPF depend on the selected output data * rate (ODR) and are specified by an index from 0 to 9, as shown in the * following table. All frequencies are given in Hz. * *
* | ODR [Hz] | 12.5 | 25 | 50 | 100 | 200 | 400 | 800 | * |---------:|:-----:|:-----:|:-----:|:----:|:----:|:----:|:---:| * | 0 | 1 | 2 | 4 | 8 | 15 | 30 | 56 | * | 1 | 0.5 | 1 | 2 | 4 | 8 | 15 | 30 | * | 2 | 0.2 | 0.5 | 1 | 2 | 4 | 8 | 15 | * | 3 | 0.1 | 0.2 | 0.5 | 1 | 2 | 4 | 8 | * | 4 | 0.05 | 0.1 | 0.2 | 0.5 | 1 | 2 | 4 | * | 5 | 0.02 | 0.05 | 0.1 | 0.2 | 0.5 | 1 | 2 | * | 6 | 0.01 | 0.02 | 0.05 | 0.1 | 0.2 | 0.5 | 1 | * | 7 | 0.005 | 0.01 | 0.02 | 0.05 | 0.1 | 0.2 | 0.5 | * | 8 | 0.002 | 0.005 | 0.01 | 0.02 | 0.05 | 0.1 | 0.2 | * | 9 | 0.001 | 0.002 | 0.005 | 0.01 | 0.02 | 0.05 | 0.1 | *

* * The default cutoff frequency of HPF is 8 Hz (index 0) and set by the * default configuration parameter #CONFIG_L3GXXXX_HPF_CUTOFF. If module * `l3gxxxx_config` is used, it can be changed at runtime using function * #l3gxxxx_config_hpf, * for example: * * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~{.c} * l3gxxxx_config_hpf(&dev, L3GXXXX_HPF_NORMAL, 0); * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ * * [Back to Table of Contents](#l3gxxxx_toc) * * # Using the driver {#l3gxxxx_using_driver} * * ## Initializaton {#l3gxxxx_initialization} * * The **easiest way to use the driver** is simply to initialize the sensor * with function #l3gxxxx_init using the default configuration parameter set * #l3gxxxx_params as defined in file l3gxxxx_params.h. * * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~{.c} * static l3gxxxx_t dev; * * if (l3gxxxx_init(&dev, &l3gxxxx_params[0]) != L3DG20H_OK) { * ... // error handling * } * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ * * After this initialization, the sensor is fully operational and data can * be fetched either by polling or interrupt driven. * * @note Function #l3gxxxx_init resets the sensor completely. All registers * are reset to default values and the embedded FIFO is cleared. * * The default configuration parameter set defines * - the communication interface, * - the output data rate (ODR) including LPF1/LPF2 cutoff frequencies, * - the filter combination and HPF cutoff frequency, * - the sensitivity level selected by full scale, * - the FIFO parameters if module `l3gxxxx_fifo` is used, * - the data interrupt (`INT2/DRDY`) pin if module `l3gxxxx_irq_data` is used, and * - the event interrupt (`INT1`) configuration if module `l3gxxxx_irq_event` is used. * * Most of these configuration parameters can also be changed at runtime * by respective functions if the module `l3gxxxx_config` is used or by * overriding default configuration parameters. Detailed information about * the default configuration can be found in section * [Configuration](#l3gxxxx_default_configuration). * * [Back to Table of Contents](#l3gxxxx_toc) * * ## Output data format {#l3gxxxx_output_data} * * In normal mode, the sensor determines periodically the angular rate for all * axes that are enabled for measurement and produces raw output data * with the selected output data rate (ODR). * * These **raw output data** are 16-bit signed integer values in two’s * complement representation. Their range and their resolution depend on the * sensitivity of the sensor which is selected by the **full scale** value. * L3Gxxxx sensors allow to select the following full scales: * *
* | Full Scale | Sensitivity | Driver symbol | Remark | * | -----------:|------------:|:------------------------|:--------------------------| * | ±245 dps | 8.75 mdps | #L3GXXXX_SCALE_245_DPS | | * | ±500 dps | 17.50 mdps | #L3GXXXX_SCALE_500_DPS | not available on A3G4250D | * | ±2000 dps | 70.00 mdps | #L3GXXXX_SCALE_2000_DPS | not available on A3G4250D | *

* * @note On the A34250D, only 245 dps (#L3GXXXX_SCALE_245_DPS) is available * as full scale value. * * The default full scale value is ±245 dps which is defined by the default * configuration parameter #CONFIG_L3GXXXX_SCALE. If module `l3gxxxx_config` * is used, it can be changed at runtime using function #l3gxxxx_set_scale, * for example: * * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~{.c} * l3gxxxx_set_scale(&dev, L3GXXXX_SCALE_500_DPS); * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ * * [Back to Table of Contents](#l3gxxxx_toc) * * ## Fetching data {#l3gxxxx_fetching_data} * * To get the information whether new data are available, the user task can * either use * * - the function #l3gxxxx_data_ready to check periodically whether new * output data are available, or * - the data ready interrupt (`INT2/DRDY`) which is triggered as soon as new * output data are available (see below). * * Last measurement results can then be fetched either * * - as 16 bit raw output data of type #l3gxxxx_raw_data_t using function * #l3gxxxx_read_raw or * - as 32 bit integer angular rates type #l3gxxxx_data_t in * millidegrees per second (mdps) using function #l3gxxxx_read. * * It is recommended to use function #l3gxxxx_read since the driver already * converts raw output data to angular rates according to the selected * full scale value. * * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~{.c} * while (1) * { * l3gxxxx_data_t data; * * // execute task every 20 ms * xtimer_usleep(20 * US_PER_MS); * ... * // test for new data and fetch them if available * if ((l3gxxxx_data_ready(&dev) > 0) && * (l3gxxxx_read(&dev, &data) == L3GXXXX_OK)) { * // do something with data * ... * } * } * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ * * @note * The functions #l3gxxxx_read and #l3gxxxx_read_raw always return the last * available results. If these functions are called more often than * measurements are performed, some measurement results are retrieved * multiple times. If these functions are called too rarely, some measurement * results will be lost. * * [Back to Table of Contents](#l3gxxxx_toc) * * # Using the FIFO {#l3gxxxx_fifo} * * In order to limit the rate at which the host processor has to fetch the * data, L3Gxxxx sensors embed a FIFO buffer. This is in particular helpful * at high output data rates. The FIFO buffer can work in seven different * modes and is able to store up to 32 data samples. Please refer the * [datasheet](http://www.st.com/resource/en/datasheet/l3gd20.pdf) or * [application note](http://www.st.com/resource/en/application_note/dm00119036.pdf) * for more details. * *
* | Driver symbol | FIFO mode | Remark | * |---------------------------|-----------------------|:------------------------| * | #L3GXXXX_BYPASS | Bypass mode | FIFO is not used | * | #L3GXXXX_FIFO | FIFO mode | | * | #L3GXXXX_STREAM | Stream mode | | * | #L3GXXXX_STREAM_TO_FIFO | Stream-to-FIFO mode | L3GD20H and L3GD20 only | * | #L3GXXXX_BYPASS_TO_STREAM | Bypass-to-Stream mode | L3GD20H and L3GD20 only | * | #L3GXXXX_DYNAMIC_STREAM | Dynamic Stream mode | L3GD20H only | * | #L3GXXXX_BYPASS_TO_FIFO | Bypass to FIFO mode | L3GD20H only | *

* * A watermark level (threshold) can be set for the FIFO. If the number of * data samples in the FIFO exceeds this value, the watermark flag is set * and the interrupt #L3GXXXX_INT_FIFO_WATERMARK is triggered, if enabled. * This interrupt can be used to gather a minimum number of samples of raw * output data before the data are fetched as a single read operation from * the sensor. * * ## Configuration of the FIFO {#l3gxxxx_fifo_config} * * The default FIFO mode is defined by the default configuration parameter * #CONFIG_L3GXXXX_FIFO_MODE. The default watermark level (threshold) of * the FIFO is defined by the default configuration parameter * #CONFIG_L3GXXXX_FIFO_WATERMARK. * * If module `l3gxxxx_config` is used, both configuration parameters can be * changed at runtime with function #l3gxxxx_set_fifo_mode. This function * takes two parameters, the FIFO mode and the watermark level. * * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~{.c} * ... * // set the FIFO mode with a watermark level (threshold) of 10, i.e. the * // watermark flag is set or the interrupt is triggered for the 11th sample * l3gxxxx_set_fifo_mode(&dev, L3GXXXX_STREAM, 10); * ... * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ * * @note To clear the FIFO at any time, set the FIFO mode to #L3GXXXX_BYPASS * and back to the desired FIFO mode. * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~{.c} * l3gxxxx_set_fifo_mode(&dev, L3GXXXX_BYPASS, 0); * l3gxxxx_set_fifo_mode(&dev, L3GXXXX_STREAM, 10); * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ * * ## Reading data from FIFO {#l3gxxxx_fifo_read_data} * * To read data from the FIFO, just use either * * - function #l3gxxxx_read_raw_fifo to get all raw output data stored * in the FIFO or * - function #l3gxxxx_read_fifo to get all data stored in the FIFO * and converted to angular rates in mdps (millidegrees per second). * * Both functions clear the FIFO and return the number of samples read * from the FIFO. * * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~{.c} * l3gxxxx_data_fifo_t data; * * while (1) * { * // execute task every 500 ms * xtimer_usleep(500 * US_PER_MS); * ... * // test for new data * if (l3gxxxx_data_ready(&dev) > 0) { * * // fetch data from fifo * int num = l3gxxxx_read_fifo(dev, data); * * for (int i = 0; i < num; i++) { * // do something with data[i] ... * } * } * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ * * [Back to Table of Contents](#l3gxxxx_toc) * * # Using Interrupts {#l3gxxxx_interrupts} * * L3Gxxxx sensors allow to activate interrupts on two different signals: * * - for data (data ready and FIFO status) on signal `INT2/DRDY`, and * - for events (axis movement and wake-up) on signal `INT1`. * * [Back to Table of Contents](#l3gxxxx_toc) * * ## Data interrupts (data ready and FIFO status) on signal INT2/DRDY {#l3gxxxx_data_interrupt} * * Interrupts on signal `INT2/DRDY` can be generated by the following sources: * *
* | Interrupt source | Driver symbol | * |:-----------------------------------------|:----------------------------| * | Output data are ready to be read | #L3GXXXX_INT_DATA_READY | * | FIFO content exceeds the watermark level | #L3GXXXX_INT_FIFO_WATERMARK | * | FIFO is completely filled | #L3GXXXX_INT_FIFO_OVERRUN | * | FIFO becomes empty | #L3GXXXX_INT_FIFO_EMPTY | *

* * #L3GXXXX_INT_DATA is the bitwise OR combination of these symbols. * * @note Using data interrupts requires to enable module `l3gxxxx_irq_data`. * * Each interrupt source can be enabled or disabled separately with * function #l3gxxxx_enable_int. * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~{.c} * l3gxxxx_enable_int(&dev, L3GXXXX_INT_DATA_READY, true); * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ * If `l3gxxxx_fifo` is used, #L3GXXXX_INT_FIFO_WATERMARK and * #L3GXXXX_INT_FIFO_OVERRUN interrupts are enabled by default. Otherwise * only #L3GXXXX_INT_DATA_READY is enabled by default. * * The MCU GPIO pin used for the `INT2/DRDY` interrupt signal has to be defined * by the hardware configuration parameter #L3GXXXX_INT2_PIN. * * Once a data interrupt is enabled, function #l3gxxxx_wait_int can be * used to wait for an interrupt on signal `INT2/DRDY`. This function * returns a structure with the interrupt sources of type #l3gxxxx_int_src_t * which contains a flag for each possible data interrupt source in * member #l3gxxxx_int_src_t::data that can be tested for true. * * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~{.c} * l3gxxxx_int_src_t int_src = l3gxxxx_wait_int(&dev); * * if (int_src.data.data_ready) { * l3gxxxx_read(&dev, &data) * ... * } * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ * * If module `l3gxxxx_fifo` is used, the corresponding interrupt sources can * be testsed. * * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~{.c} * l3gxxxx_int_src_t int_src = l3gxxxx_wait_int(&dev); * * ... * if (int_src.data.fifo_threshold) { * l3gxxxx_read(&dev, &data); * ... * } * if (int_src.data.fifo_overrun) { * printf("FIFO overrun"); * } * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ * * [Back to Table of Contents](#l3gxxxx_toc) * * ## Event interrupts (axes movement and wake-up) on signal INT1 {#l3gxxxx_event_interrupt} * * This interrupt signal allows to recognize independent rotations of * the X, Y and Z axes. For this purpose, a separate threshold can be * defined for each axis. If activated, the angular rate of each axis * is compared with its threshold to check whether it is below or above * the threshold. The results of all activated comparisons are combined * OR or AND to generate the interrupt signal. * * The configuration of the thresholds, the activated comparisons and * selected AND/OR combination allows to recognize special situations * like selective axis movement (SA) or axes movement wake-up (WU). * * - **Selective axis movement recognition (SA)** means that only one * axis is rotating. This is the case if the angular rate of selected * axis is above its threshold AND angular rates of all other axes are * below their thresholds. * * - **Axis movement wake-up (WU)** means that the angular rate of any * axis is above its threshold (OR). * * @note Using event interrupts requires to enable module `l3gxxxx_irq_event`. * * The MCU GPIO pin used for the `INT1` interrupt signal is defined by the * hardware configuration parameter #L3GXXXX_INT1_PIN. * * The default configuration for event interrupts is defined by * #L3GXXXX_INT1_PARAMS. This configuration can be changed either by * overriding default configuration parameters * #CONFIG_L3GXXXX_INT1_X_THRESH, #CONFIG_L3GXXXX_INT1_Y_THRESH, * #CONFIG_L3GXXXX_INT1_Z_THRESH, * #CONFIG_L3GXXXX_INT1_X_LT_THRESH, #CONFIG_L3GXXXX_INT1_X_GT_THRESH, * #CONFIG_L3GXXXX_INT1_Y_LT_THRESH, #CONFIG_L3GXXXX_INT1_Y_GT_THRESH, * #CONFIG_L3GXXXX_INT1_Z_LT_THRESH, #CONFIG_L3GXXXX_INT1_Z_GT_THRESH, * #CONFIG_L3GXXXX_INT1_FILTER, #CONFIG_L3GXXXX_INT1_AND and * #CONFIG_L3GXXXX_INT1_LATCH or at runtime using function * #l3gxxxx_set_int_event_cfg with a set of parameters * of type #l3gxxxx_int_event_cfg_t that contains the configuration. * For example, selective axis movement recognition (SA) for the z-axis * could be configured as following. With this configuration, the event * interrupt is only triggered if all conditions are met. * * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~{.c} * l3gxxxx_int_event_cfg_t int_cfg; * * // thresholds * int_cfg.x_threshold = 100; * int_cfg.y_threshold = 100; * int_cfg.z_threshold = 1000; * * // X axis below threshold enabled * int_cfg.x_low_enabled = true; * int_cfg.x_high_enabled = false; * * // Y axis below threshold enabled * int_cfg.y_low_enabled = true; * int_cfg.y_high_enabled = false; * * // Z axis below threshold enabled * int_cfg.z_low_enabled = false; * int_cfg.z_high_enabled = true; * * // AND combination of all conditions * int_cfg.and_or = true; * * // further parameters * int_cfg.filter = L3GXXXX_HPF_ONLY; * int_cfg.latch = true; * int_cfg.duration = 0; * int_cfg.wait = false; * * // set the configuration and enable the interrupt * l3gxxxx_set_int_event_cfg(&dev, &int_cfg); * l3gxxxx_enable_int(&dev, L3GXXXX_INT_EVENT, true); * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ * * The data structure #l3gxxxx_int_event_cfg_t defines * - whether the interrupt signal should be latched until the interrupt * source is read by function #l3gxxxx_wait_int, * - which filters are applied to the data used for interrupt generation, * - which time measured in 1/ODR an interrupt condition has to be given before * the interrupt is generated, and * - whether this time is also used when interrupt condition is no * longer given before interrupt signal is reset. * * @note * - If the interrupt is configured to be latched, the interrupt signal is * active until the interrupt source is read by function #l3gxxxx_wait_int * AND next raw output data are available. Otherwise the interrupt signal is * active as long as the interrupt condition is satisfied. * - The driver function #l3gxxxx_wait_int uses the leading flank of the * interrupt signal to detect an interrupt and read the interrupt source. * * Function #l3gxxxx_enable_int is used to enable or disable the * event interrupt generation (#L3GXXXX_INT_EVENT). * * As with data interrupts function #l3gxxxx_wait_int can be used to * wait for an interrupt on signal `INT1` if event interrupts are enabled. * This function returns a structure with the interrupt sources of type * #l3gxxxx_int_src_t which contains a flag for each possible event interrupt * source in member #l3gxxxx_int_src_t::event that can be tested for true. * * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~{.c} * l3gxxxx_int_src_t int_src = l3gxxxx_wait_int(&dev); * * if (int_src.event.x_low) { * printf("x below "); * } * if (int_src.event.x_high) { * printf("x above "); * } * ... * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ * * Activating all threshold comparisons and using the OR combination is the * most flexible way to realize functions like selective axis movement by * combining the different interrupt sources as required by the application. * * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~{.c} * l3gxxxx_int_event_cfg_t int_cfg; * * // thresholds * int_cfg.x_threshold = 100; * int_cfg.y_threshold = 100; * int_cfg.z_threshold = 100; * * // X axis below and above threshold enabled * int_cfg.x_low_enabled = true; * int_cfg.x_high_enabled = true; * * // Y axis below and above threshold enabled * int_cfg.y_low_enabled = true; * int_cfg.y_high_enabled = true; * * // Z axis below and above threshold enabled * int_cfg.z_low_enabled = true; * int_cfg.z_high_enabled = true; * * // OR combination of all conditions * int_cfg.and_or = false; * ... * // set the configuration and enable the interrupt * l3gxxxx_set_int_event_cfg(&dev, &int_cfg); * l3gxxxx_enable_int(&dev, l3gxxxx_int_event, true); * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ * * Following example shows the selective axis movement recognition (SA) * for the Z-axis. * * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~{.c} * l3gxxxx_int_src_t int_src = l3gxxxx_wait_int(&dev); * * if (int_src.event.y_low && int_src.event.y_low && int_src.event.z_high) { * // selective axis movement of Z-axis * ... * } * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ * * ## Interrupt context problem {#l3gxxxx_interrupt_context} * * All functions of the driver require direct access to the sensor via * I2C or SPI which does not work in interrupt context. * * Therefore, the driver prevents the direct use of the interrupts and * application specific ISRs. The only way to use interrupts is to call * the function #l3gxxxx_wait_int which enables the interrupt signals * for the configured MCU GPIO pins and then blocks the calling thread * until an interrupt is triggered. * * Once an interrupt is triggered, the driver handles the interrupt with * an internal ISR and then returns from the #l3gxxxx_wait_int function. * The return value is a structure with the interrupt sources of type * #l3gxxxx_int_src_t, which contains a flag for each possible interrupt * source that can be tested for true. * * [Back to Table of Contents](#l3gxxxx_toc) * * ## Interrupt signal properties {#l3gxxxx_interrupt_signal} * * By default, interrupt signals are high active push/pull outputs. * * # Power Saving {#l3gxxxx_power_saving} * * L3Gxxxx sensors offer two modes for power saving: * * - **Power-down** mode * - **Sleep** mode * * While in power-down mode almost all internal blocks of the device including * the gyros are switched off, in sleep mode only the measuring functions for * all three axes are deactivated. Therefore, the time to continue measurements * after sleep mode is drastically shorter than after power down. * *
* | Starting mode | Target mode | Turn-on time typical | * | ------------- | ----------- | ---------------------| * | Power-down | Normal | 100 ms | * | Power-down | Sleep | 100 ms | * | Sleep | Normal | 1/ODR when LPF2 disabled
6/ODR when LPF2 enabled | *

* * L3Gxxxx sensors can be powered down when no measurements are required * using the function #l3gxxxx_power_down. The power consumption is reduced * to some uA in power-down mode. To restart the L3Gxxxx in previous * measurement mode, the #l3gxxxx_power_up function can be used. * * If module `l3gxxxx_sleep` is enabled, the sleep mode can be activated with * function #l3gxxxx_sleep. The power consumption is then reduced from 4.8 mA * to 2.4 mA and thus to half. The #l3gxxxx_wake_up function continues the * measurement in previous operation mode. * * [Back to Table of Contents](#l3gxxxx_toc) * * # Low level functions {#l3gxxxx_low_level} * * L3Gxxxx sensors are complex and flexible sensors with a lot of * features. It can be used for a big number of different use cases. * Since it is impossible to implement a high level interface * which is generic enough to cover all the functionality of the sensor * for all different use cases, there are two low level interface * functions that allow direct read and write access to the registers * of the sensor. * * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~{.c} * bool l3gxxxx_reg_read(l3gxxxx_sensor_t* dev, uint8_t reg, uint8_t *data, uint16_t len); * bool l3gxxxx_reg_write(l3gxxxx_sensor_t* dev, uint8_t reg, uint8_t *data, uint16_t len); * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ * * @warning * These functions should only be used to do something special that * is not covered by the high level interface AND if you exactly * know what you do and what it might affect. Please be aware that * it might affect the high level interface. * * [Back to Table of Contents](#l3gxxxx_toc) * * # Default configuration {#l3gxxxx_default_configuration} * * Default sensor hardware configurations are set in file `l3gxxxx_params.h` * using the following defines: * *
* | Hardware configuration | Driver name | Default Value | * |:-----------------------|:------------------|:--------------------| * | I2C device | #L3GXXXX_I2C_DEV | I2C_DEV(0) | * | I2C address | #L3GXXXX_I2C_ADDR | #L3GXXXX_I2C_ADDR_2 | * | SPI device | #L3GXXXX_SPI_DEV | SPI_DEV(0) | * | SPI clock frequency | #L3GXXXX_SPI_CLK | SPI_CLK_1MHZ | * | SPI CS signal | #L3GXXXX_SPI_CS | GPIO_PIN(0,0) | * | `INT1` MCU pin | #L3GXXXX_INT1_PIN | GPIO_PIN(0,1) | * | `INT2/DRDY` MCU pin | #L3GXXXX_INT2_PIN | GPIO_PIN(0,2) | *

* * These hardware configurations can be overridden either by the board * definition or by defining them in the `CFLAGS` variable in the make * command, for example: * * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ * DRIVER=l3gd20h USEMODULE='l3gxxxx_irq_data` \ * CLFAGS='-DL3GXXXX_INT2_PIN=GPIO_PIN\(0,5\)' \ * BOARD=... make -C tests/driver_l3gxxxx * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ * * The default configuration of the sensor is defined in file * `l3gxxxx_params.h` using the following defines: * *
* | Configuration parameter | Driver name | Default Value | * |:-------------------------------------|:------------------------------|:----------------------| * | ODR and LPF2 cutoff frequency | #CONFIG_L3GXXXX_ODR | #L3GXXXX_ODR_100_25 | * | Full scale | #CONFIG_L3GXXXX_SCALE | #L3GXXXX_SCALE_245_DPS| * | Filter selection used for output data| #CONFIG_L3GXXXX_FILTER_SEL | #L3GXXXX_HPF_AND_LPF2 | * | HPF mode used for output data | #CONFIG_L3GXXXX_HPF_MODE | #L3GXXXX_HPF_NORMAL | * | HPF cutoff frequency 8 Hz | #CONFIG_L3GXXXX_HPF_CUTOFF | 0 | * | FIFO mode if FIFO is used | #CONFIG_L3GXXXX_FIFO_MODE | #L3GXXXX_FIFO | * | FIFO threshold value if FIFO is used | #CONFIG_L3GXXXX_FIFO_WATERMARK| 23 | * | INT1 threshold for X axis (~30 dps) | #CONFIG_L3GXXXX_INT1_X_THRESH | 4012 | * | INT1 threshold for Y axis (~30 dps) | #CONFIG_L3GXXXX_INT1_Y_THRESH | 4012 | * | INT1 threshold for Z axis (~30 dps) | #CONFIG_L3GXXXX_INT1_Z_THRESH | 4012 | * | INT1 interrupt enable for X > X threshold | #CONFIG_L3GXXXX_INT1_X_GT_THRESH | true | * | INT1 interrupt enable for Y > Y threshold | #CONFIG_L3GXXXX_INT1_Y_GT_THRESH | true | * | INT1 interrupt enable for Z > Z threshold | #CONFIG_L3GXXXX_INT1_Z_GT_THRESH | true | * | INT1 interrupt enable for X < X threshold | #CONFIG_L3GXXXX_INT1_X_LT_THRESH | false | * | INT1 interrupt enable for Y < Y threshold | #CONFIG_L3GXXXX_INT1_Y_LT_THRESH | false | * | INT1 interrupt enable for Z < Z threshold | #CONFIG_L3GXXXX_INT1_Z_LT_THRESH | false | * | INT1 filter selection | #CONFIG_L3GXXXX_INT1_FILTER | #L3GXXXX_HPF_AND_LPF2 | * | INT1 interrupt combination | #CONFIG_L3GXXXX_INT1_AND | false | * | INT1 interrupt latch enabled | #CONFIG_L3GXXXX_INT1_LATCH | true | *

* * Single or all parameters of the default configuration can be overridden * either by defining them in the variable `CFLAGS` in the make command * line or by placing a modified file `l3gxxxx_params.h` in the * application directory, for example: * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ * DRIVER=l3gd20h USEMODULE='l3gxxxx_low_odr l3gxxxx_irq_data` \ * CLFAGS='-DCONFIG_L3GXXXX_ODR=L3GXXXX_ODR_12 -DL3GXXXX_INT2_PIN=GPIO_PIN\(0,5\)' \ * BOARD=... make -C tests/driver_l3gxxxx * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ * * @author Gunar Schorcht * * @{ * @file * @brief Device Driver for ST L3Gxxxx 3-axis gyroscope sensor family */ #ifndef L3GXXXX_H #define L3GXXXX_H #ifdef __cplusplus extern "C" { #endif #include #include #include "mutex.h" #include "periph/gpio.h" #include "periph/i2c.h" #include "periph/spi.h" #include "l3gxxxx_regs.h" #if !IS_USED(MODULE_L3GD20H) && !IS_USED(MODULE_L3GD20) \ && !IS_USED(MODULE_L3G4200_NG) \ && !IS_USED(MODULE_A3G4250D) \ && !IS_USED(MODULE_I3G4250D) #error Please select your sensor variant by using the respective pseudomodule. #endif /** * @name L3Gxxxx addresses * @{ */ #if IS_USED(MODULE_L3GD20H) || IS_USED(MODULE_L3GD20) #define L3GXXXX_I2C_ADDR_1 (0x6a) /**< SDO pin is low */ #define L3GXXXX_I2C_ADDR_2 (0x6b) /**< SDO pin is high */ #else #define L3GXXXX_I2C_ADDR_1 (0x68) /**< SDO pin is low */ #define L3GXXXX_I2C_ADDR_2 (0x69) /**< SDO pin is high */ #endif /** @} */ /** * @name L3Gxxxx chip ids * @{ */ #define L3GXXXX_CHIP_ID_L3GD20H (0xd7) /**< Chip ID for L3GD20H */ #define L3GXXXX_CHIP_ID_L3GD20 (0xd4) /**< Chip ID for L3GD20 */ #define L3GXXXX_CHIP_ID_X3G42XXD (0xd3) /**< Chip ID for L3G4200D, I3G4250D, A3G4250D */ /** @} */ /** Definition of error codes */ typedef enum { L3GXXXX_OK, /**< success */ L3GXXXX_ERROR_I2C, /**< I2C communication error */ L3GXXXX_ERROR_SPI, /**< SPI communication error */ L3GXXXX_ERROR_WRONG_CHIP_ID, /**< wrong chip id read from WHO_AM_I reg */ L3GXXXX_ERROR_INV_DEV, /**< invalid device type used */ L3GXXXX_ERROR_INV_MODE, /**< sensor mode is invalid or not available */ L3GXXXX_ERROR_INV_FIFO_MODE, /**< FIFO mode is invalid or not available */ L3GXXXX_ERROR_INV_INT_TYPE, /**< invalid interrupt type used */ L3GXXXX_ERROR_NO_NEW_DATA, /**< no new data are available */ L3GXXXX_ERROR_RAW_DATA, /**< reading raw output data failed */ L3GXXXX_ERROR_RAW_DATA_FIFO, /**< reading raw output data from FIFO failed */ L3GXXXX_ERROR_NO_INT1_PIN, /**< `INT1` signal pin not configured */ L3GXXXX_ERROR_NO_INT2_PIN, /**< `INT2/DRDY` signal pin not configured */ L3GXXXX_ERROR_BYPASS_MODE, /**< sensor is in bypass mode */ L3GXXXX_ERROR_FIFO_MODE, /**< sensor is in FIFO mode */ } l3gxxxx_error_codes_t; /** * @brief Sensor output data rates (ODR) and LPF2 cutoff frequencies * * The following output data rates (ODR) and the LPF1/LPF2 cutoff frequencies * are defined (Reference: Application Note AN4506): * *
* | Mode | ODR [Hz] | LPF1 cutoff [Hz] | LPF2 cutoff [Hz] | * |:-----------------------|:--------:|:----------------:|:----------------:| * | High ODR | | | | * | L3GXXXX_ODR_100_12 | 100 | 32 | 12.5 | * | L3GXXXX_ODR_100_25 | 100 | 32 | 25 | * | L3GXXXX_ODR_200_12 | 200 | 63.3 | 12.5 | * | L3GXXXX_ODR_200_25 | 200 | 63.3 | 25 | * | L3GXXXX_ODR_200_50 | 200 | 63.3 | 50 | * | L3GXXXX_ODR_200_70 | 200 | 63.3 | 70 | * | L3GXXXX_ODR_400_20 | 400 | 128 | 20 | * | L3GXXXX_ODR_400_25 | 400 | 128 | 25 | * | L3GXXXX_ODR_400_50 | 400 | 128 | 50 | * | L3GXXXX_ODR_400_110 | 400 | 128 | 110 | * | L3GXXXX_ODR_800_30 | 800 | 211 | 30 | * | L3GXXXX_ODR_800_35 | 800 | 211 | 35 | * | L3GXXXX_ODR_800_50 | 800 | 211 | 50 | * | L3GXXXX_ODR_800_100 | 800 | 211 | 100 | * | | | | | * | Low ODR (L3GD20H only) | | | | * | L3GXXXX_ODR_12 | 12.5 | 3.9 | - | * | L3GXXXX_ODR_25 | 25 | 7.8 | - | * | L3GXXXX_ODR_50 | 50 | 16 | 16.6 | *

* * Detailed information about the filter chain and possible * filter combinations can be found in the section * [Output data rates and filters](#l3gxxxx_odr_filters). * * While LPF1 is always used, LPF2 and HPF have to be explicitly enabled * by the configuration parameter l3gxxxx_params_t::filter_sel or the * #l3gxxxx_select_output_filter function if module `l3gxxxx_config` is * used. #L3GXXXX_ODR_100_25 is used by the default configuration. * * @note Low data rates 12.5 Hz, 25 Hz and 50 Hz are only supported by L3GXXXX. */ typedef enum { L3GXXXX_ODR_100_12 = 0x00, /**< High ODR 100 Hz, LPF1 cutoff 32 Hz, LPF2 cutoff 12.5 Hz */ L3GXXXX_ODR_100_25 = 0x01, /**< High ODR 100 Hz, LPF1 cutoff 32 Hz, LPF2 cutoff 25 Hz */ L3GXXXX_ODR_200_12 = 0x04, /**< High ODR 200 Hz, LPF1 cutoff 63.3 Hz, LPF2 cutoff 12.5 Hz */ L3GXXXX_ODR_200_25 = 0x05, /**< High ODR 200 Hz, LPF1 cutoff 63.3 Hz, LPF2 cutoff 25 Hz */ L3GXXXX_ODR_200_50 = 0x06, /**< High ODR 200 Hz, LPF1 cutoff 63.3 Hz, LPF2 cutoff 50 Hz */ L3GXXXX_ODR_200_70 = 0x07, /**< High ODR 200 Hz, LPF1 cutoff 63.3 Hz, LPF2 cutoff 70 Hz */ L3GXXXX_ODR_400_20 = 0x08, /**< High ODR 400 Hz, LPF1 cutoff 128 Hz, LPF2 cutoff 20 Hz */ L3GXXXX_ODR_400_25 = 0x09, /**< High ODR 400 Hz, LPF1 cutoff 128 Hz, LPF2 cutoff 25 Hz */ L3GXXXX_ODR_400_50 = 0x0a, /**< High ODR 400 Hz, LPF1 cutoff 128 Hz, LPF2 cutoff 50 Hz */ L3GXXXX_ODR_400_110 = 0x0b, /**< High ODR 400 Hz, LPF1 cutoff 128 Hz, LPF2 cutoff 110 Hz */ L3GXXXX_ODR_800_30 = 0x0c, /**< High ODR 400 Hz, LPF1 cutoff 211 Hz, LPF2 cutoff 30 Hz */ L3GXXXX_ODR_800_35 = 0x0d, /**< High ODR 400 Hz, LPF1 cutoff 211 Hz, LPF2 cutoff 35 Hz */ L3GXXXX_ODR_800_50 = 0x0e, /**< High ODR 400 Hz, LPF1 cutoff 211 Hz, LPF2 cutoff 50 Hz */ L3GXXXX_ODR_800_100 = 0x0f, /**< High ODR 400 Hz, LPF1 cutoff 211 Hz, LPF2 cutoff 100 Hz */ #if IS_USED(MODULE_L3GD20H) || IS_USED(MODULE_L3GXXXX_LOW_ODR) || DOXYGEN L3GXXXX_ODR_12 = 0x10, /**< Low ODR 12.5 Hz, LPF1 cutoff 3.9 Hz, LPF2 not used */ L3GXXXX_ODR_25 = 0x14, /**< Low ODR 25 Hz, LPF1 cutoff 7.8 Hz, LPF2 not used */ L3GXXXX_ODR_50 = 0x18, /**< Low ODR 50 Hz, LPF1 cutoff 16 Hz, LPF2 cutoff 16.6 Hz */ #endif } l3gxxxx_odr_t; /** * @brief Full scale in degrees per second (dps) * * The full scale value determines the sensitivity of the sensor and thus * the range and resolution of the sensor's output data. The resolution * of the output data is about Full Scale/INT16_MAX. * * @note On the A34250D, only 245 dps (#L3GXXXX_SCALE_245_DPS) is * available as full scale value. */ typedef enum { L3GXXXX_SCALE_245_DPS = 0, /**< 245 dps (default) */ L3GXXXX_SCALE_500_DPS = 1, /**< 500 dps */ L3GXXXX_SCALE_2000_DPS = 2, /**< 2000 dps */ } l3gxxxx_scale_t; /** * @brief FIFO mode * * The integrated FIFO with up to 32 data samples can be used in different * modes. The mode defines the behavior of FIFO when it becomes full. */ typedef enum { L3GXXXX_BYPASS = 0, /**< FIFO is not used (default) */ L3GXXXX_FIFO = 1, /**< Data samples are stored in the FIFO until it is full */ L3GXXXX_STREAM = 2, /**< FIFO is used as ring buffer and newest data samples are stored continuously */ #if IS_USED(MODULE_L3GD20H) || IS_USED(MODULE_L3GD20) || DOXYGEN L3GXXXX_STREAM_TO_FIFO = 3, /**< FIFO is used in Stream mode until an interrupt, switches then to FIFO mode (L3GD20H and L3GD20 only) */ L3GXXXX_BYPASS_TO_STREAM = 4, /**< FIFO is not used until an interrupt, switches then to Stream mode (L3GD20H and L3GD20 only) */ #endif #if IS_USED(MODULE_L3GD20H) || DOXYGEN L3GXXXX_DYNAMIC_STREAM = 6, /**< like Stream mode, but differs in reading the first data sample after emptying (L3GD20H only) */ L3GXXXX_BYPASS_TO_FIFO = 7 /**< FIFO is not used until an interrupt, switches then to FIFO mode (L3GD20H only) */ #endif } l3gxxxx_fifo_mode_t; /** * @brief High pass filter (HPF) and low pass filter 2 (LPF2) selection * * L3Gxxxx sensors integrate a combination of two low pass filters (LPF) and * one high pass filter (HPF). * * First, raw sensor data are always filtered by LPF1 with a cutoff frequency * that is fixed for the selected output data rate (ODR), see #l3gxxxx_odr_t. * Resulting data can then optionally be filtered by HPF and/or LPF2. Both * filters can be used or bypassed. * * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ * +---------------> L3GXXXX_NO_FILTER * | +----- + * +------------+--->| |---> L3GXXXX_LPF2_ONLY * | | LPF2 | * +-----+ +------+ | +-----+ +--->| |---> L3GXXXX_HPF_AND_LPF2 * | | | | | | | | +------+ * | ADC |-->| LPF1 |--+-->| HPF |--+---------------> L3GXXXX_HPF_ONLY * | | | | | | * +-----+ +------+ +-----+ * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ * #l3gxxxx_filter_sel_t defines the possible filter combinations that can * be used to select the filters for the output data and for the * interrupt generation separately. * * The default filter selection for the output data is #L3GXXXX_HPF_AND_LPF2 * and is defined by the default configuration parameter * #CONFIG_L3GXXXX_FILTER_SEL. If the module `l3gxxxx_config` is used, it can * be changed at runtime using function #l3gxxxx_select_output_filter. * * The default filter selection for event interrupt generation is * #L3GXXXX_HPF_AND_LPF2 and is defined by default configuration parameter * #CONFIG_L3GXXXX_INT1_FILTER. It can be changed at runtime with function * #l3gxxxx_set_int_event_cfg. * * @note Since same filters are used for the output data as well as the * data used for event interrupt generation (selective axes movement / wake-up), * the configuration of the filters always affects both data. If the HPF is * enabled for filtering the output data, it is also active for filtering the * sensor data used for interrupt generation if the LPF2 is enabled for * interrupt generation. The other way around, the HPF is also active for * filtering the output data when it is enabled for interrupt generation and * when the LPF2 is enabled for the output data. * * The cutoff frequencies of LPF1 and LPF2 are determined by the used output * data rate #l3gxxxx_odr_t, see section [Output Data Rates and Filters] * (#l3gxxxx_odr_filters). The default cutoff frequency of HPF is 8 Hz and * set by the default configuration parameter #CONFIG_L3GXXXX_HPF_CUTOFF. * If module `l3gxxxx_config` is used, it can be changed at runtime using * function #l3gxxxx_config_hpf. */ typedef enum { L3GXXXX_NO_FILTER = 0, /**< HPF not used, LPF2 not used (default) */ L3GXXXX_HPF_ONLY = 1, /**< HPF used, LPF2 not used */ L3GXXXX_LPF2_ONLY = 2, /**< HPF not used, LPF2 used */ L3GXXXX_HPF_AND_LPF2 = 3 /**< HPF used, LPF2 used */ } l3gxxxx_filter_sel_t; /** * @brief HPF (high pass filter) modes * * The high pass filter can be used in different modes. */ typedef enum { L3GXXXX_HPF_NORMAL = 0, /**< Normal mode, HPF is reset by reading the REFERENCE register */ L3GXXXX_HPF_REFERENCE = 1, /**< Reference mode, output data are the difference to the REFERENCE register */ L3GXXXX_HPF_AUTORESET = 3 /**< Autoreset mode, HPF is automatically reset when a configured event interrupt occurs */ } l3gxxxx_hpf_mode_t; /** * @brief Interrupt types * * L3Gxxxx sensors support different types of interrupts. These are on the * one hand the various data interrupts on signal `INT2/DRDY` and on the * other hand event interrupts on signal `INT1`. * * The enumeration values correspond to the according bits in register * CTRL3 (#L3GXXXX_REG_CTRL3). * * #L3GXXXX_INT_DATA combines the various data interrupts to an ORed value. */ typedef enum { /** * Data interrupt on signal `INT2/DRDY`: Output data are ready to be read. */ L3GXXXX_INT_DATA_READY = L3GXXXX_INT2_DRDY, /** * Data interrupt on signal `INT2/DRDY`: FIFO filling exceeds the * watermark level (threshold) */ L3GXXXX_INT_FIFO_WATERMARK = L3GXXXX_INT2_WTM, /** * Data interrupt on signal `INT2/DRDY`: FIFO is completely filled */ L3GXXXX_INT_FIFO_OVERRUN = L3GXXXX_INT2_ORUN, /** * Data interrupt on signal `INT2/DRDY`: FIFO becomes empty */ L3GXXXX_INT_FIFO_EMPTY = L3GXXXX_INT2_EMPTY, /** * Event interrupt on signal `INT1`: Angular rate of one or more axes * is lower or higher than the configured threshold. */ L3GXXXX_INT_EVENT = L3GXXXX_INT1_IG, } l3gxxxx_int_types_t; /** * @brief Data interrupts (Data ready and FIFO status) * * This define combines the data interrupt types of #l3gxxxx_int_types_t * that use the `INT2/DRDY` signal to an ORed value. */ #define L3GXXXX_INT_DATA (L3GXXXX_INT_DATA_READY | \ L3GXXXX_INT_FIFO_WATERMARK | \ L3GXXXX_INT_FIFO_OVERRUN | \ L3GXXXX_INT_FIFO_EMPTY) /** * @brief Event interrupt generator configuration (axis movement and wake-up) * * memset to 0 to disable all interrupt conditions (default) */ typedef struct { uint16_t x_threshold; /**< X threshold value in full scale / INT16_MAX */ uint16_t y_threshold; /**< Y threshold value in full scale / INT16_MAX */ uint16_t z_threshold; /**< Z threshold value in full scale / INT16_MAX */ bool x_low_enabled; /**< Interrupt enabled for |X| < X threshold (X low event) */ bool x_high_enabled; /**< Interrupt enabled for |X| > X threshold (X high event) */ bool y_low_enabled; /**< Interrupt enabled for |Y| < Y threshold (Y low event) */ bool y_high_enabled; /**< Interrupt enabled for |Y| > Y threshold (Y high event) */ bool z_low_enabled; /**< Interrupt enabled for |Z| < Z threshold (Z low event) */ bool z_high_enabled; /**< Interrupt enabled for |Z| > Z threshold (Y high event) */ l3gxxxx_filter_sel_t filter; /**< HPF and LPF2 filter selection used for threshold comparison */ bool and_or; /**< Combination of interrupt events (true=AND, false=OR):
AND - all enabled axes passed their tresholds
OR - at least one axis passed its threshold */ bool latch; /**< Latch the interrupt when true until the interrupt source has been read by function l3gxxxx_wait_int. */ uint8_t duration; /**< Duration in 1/ODR an interrupt condition has to be given before the interrupt is generated. */ bool wait; /**< When true, duration is also used when interrupt condition in no longer given before interrupt signal is reset. */ bool counter_mode; /**< DCRM is not documented and not used therefore. */ } l3gxxxx_int_event_cfg_t; /** * @brief Event interrupt sources (axis movement and wake-up) */ typedef union { struct { uint8_t x_low :1; /**< true on |X| < X threshold (X low event) */ uint8_t x_high:1; /**< true on |X| > X threshold (X high event) */ uint8_t y_low :1; /**< true on |Y| < Y threshold (Y low event) */ uint8_t y_high:1; /**< true on |Y| > Y threshold (Y high event) */ uint8_t z_low :1; /**< true on |Z| < Z threshold (Z low event) */ uint8_t z_high:1; /**< true on |Z| > Z threshold (Z high event) */ uint8_t active:1; /**< true when one ore more events have been generated */ uint8_t unused:1; /**< not used */ }; uint8_t val; /**< event interrupt sources as value that can be used for bitwise operations */ } l3gxxxx_int_event_src_t; /** * @brief Data interrupt sources (data ready and FIFO status) */ typedef union { struct { uint8_t fifo_empty :1; /**< true when FIFO is empty */ uint8_t fifo_overrun :1; /**< true when FIFO is completely filled */ uint8_t fifo_watermark:1; /**< true when FIFO filling > watermark */ uint8_t data_ready :1; /**< true when data are ready to read */ uint8_t unused :4; /**< not used */ }; uint8_t val; /**< data interrupt sources as value that can be used for bitwise operations */ } l3gxxxx_int_data_src_t; /** * @brief Composite type for all possible interrupt sources * * This type combines the possible interrupt sources for event interrupts on * signal `INT1` (l3gxxxx_int_event_src_t) with those for data interrupts on * signal `INT2/DRDY` (l3gxxxx_int_data_src_t). */ typedef struct { l3gxxxx_int_event_src_t event; /**< event interrupt sources */ l3gxxxx_int_data_src_t data; /**< data interrupt sources */ } l3gxxxx_int_src_t; /** * @brief `INT1`, `INT2/DRDY` sensor signal activity level */ typedef enum { L3GXXXX_HIGH = 0, /**< INT signals are High active (default) */ L3GXXXX_LOW /**< INT signals are Low active */ } l3gxxxx_int_pin_level_t; /** * @brief `INT1`, `INT2/DRDY` sensor signal type */ typedef enum { L3GXXXX_PUSH_PULL = 0, /**< INT pins are push/pull outputs (default) */ L3GXXXX_OPEN_DRAIN /**< INT pins are open-drain */ } l3gxxxx_int_pin_type_t; /** * @brief Raw output data set as two's complements */ typedef struct { int16_t x; /**< X angular rate (roll) as 16 bit two's complements */ int16_t y; /**< Y angular rate (pitch) as 16 bit two's complements */ int16_t z; /**< Z angular rate (yaw) as 16 bit two's complements */ } l3gxxxx_raw_data_t; /** * @brief Angular rates in millidegrees per seconds (mdps) */ typedef struct { int32_t x; /**< X angular rate (roll) */ int32_t y; /**< Y angular rate (pitch) */ int32_t z; /**< Z angular rate (yaw) */ } l3gxxxx_data_t; /** * @brief Raw output data FIFO type */ typedef l3gxxxx_raw_data_t l3gxxxx_raw_data_fifo_t[32]; /** * @brief Angular rates FIFO type */ typedef l3gxxxx_data_t l3gxxxx_data_fifo_t[32]; /** * @brief L3Gxxxx interface types */ typedef enum { #if IS_USED(MODULE_L3GXXXX_I2C) || DOXYGEN L3GXXXX_I2C, /**< I2C interface used */ #endif #if IS_USED(MODULE_L3GXXXX_SPI) || DOXYGEN L3GXXXX_SPI, /**< SPI interface used */ #endif } l3gxxxx_if_t; #if IS_USED(MODULE_L3GXXXX_I2C) || DOXYGEN /** * @brief L3Gxxxx I2C interface parameters */ typedef struct { i2c_t dev; /**< I2C device used */ uint8_t addr; /**< I2C slave address */ } l3gxxxx_i2c_params_t; #endif #if IS_USED(MODULE_L3GXXXX_SPI) || DOXYGEN /** * @brief L3Gxxxx SPI interface parameters */ typedef struct { spi_t dev; /**< SPI device used */ spi_clk_t clk; /**< SPI clock speed */ gpio_t cs; /**< SPI chip Select pin */ } l3gxxxx_spi_params_t; #endif /** * @brief L3Gxxxx Hardware interface parameters union */ typedef struct { l3gxxxx_if_t type; /**< I2C/SPI interface type selector */ union { #if IS_USED(MODULE_L3GXXXX_I2C) || DOXYGEN l3gxxxx_i2c_params_t i2c; /**< I2C interface parameters */ #endif #if IS_USED(MODULE_L3GXXXX_SPI) || DOXYGEN l3gxxxx_spi_params_t spi; /**< SPI interface parameters */ #endif }; } l3gxxxx_if_params_t; /** * @brief L3Gxxxx device initialization parameters */ typedef struct { l3gxxxx_if_params_t if_params; /**< Interface parameters (I2C/SPI) */ l3gxxxx_odr_t odr; /**< ODR and LPF2 cutoff frequency */ l3gxxxx_scale_t scale; /**< Full scale */ l3gxxxx_filter_sel_t filter_sel; /**< HPF/LPF2 filter selection */ l3gxxxx_hpf_mode_t hpf_mode; /**< HPF mode */ uint8_t hpf_cutoff; /**< HPF cutoff frequency 0..9, see l3gxxxx_config_hpf for details */ #if IS_USED(MODULE_L3GXXXX_FIFO) || DOXYGEN l3gxxxx_fifo_mode_t fifo_mode; /**< FIFO operation mode */ uint8_t fifo_watermark; /**< FIFO watermark setting 0..31 */ #endif #if IS_USED(MODULE_L3GXXXX_IRQ_DATA) || DOXYGEN gpio_t int2_pin; /**< MCU GPIO pin for data interrupts on signal `INT2/DRDY` pin */ #endif #if IS_USED(MODULE_L3GXXXX_IRQ_EVENT) || DOXYGEN l3gxxxx_int_event_cfg_t int1_cfg; /**< event interrupt parameters */ gpio_t int1_pin; /**< MCU GPIO pin for event interrupts on signal `INT1` */ #endif } l3gxxxx_params_t; /** * @brief L3Gxxxx sensor device data structure type */ typedef struct { l3gxxxx_params_t params; /**< Device initialization parameters */ l3gxxxx_int_types_t int_type; /**< Type of the last interrupt triggered */ mutex_t int_lock; /**< Used to lock the calling thread while waiting for an interrupt */ enum { /**< Sensor detected at runtime */ L3GD20H, /**< L3GD20H detected */ L3GD20, /**< L3GD20 detected */ X3G42XXD /**< L3G400D, I3G4250D or A3G4250D detected */ } sensor; /**< recognized sensor type */ } l3gxxxx_t; /** * @name Sensor initialization and configuration * @{ */ /** * @brief Initialize the L3Gxxxx sensor device * * This function resets the sensor and initializes it according to the * given configuration parameter set. All registers are reset to their * default values. The FIFO is cleared. * * @param[in] dev device descriptor of the L3Gxxxx sensor to be initialized * @param[in] params L3Gxxxx configuration parameters * * @retval L3GXXXX_OK on success * @retval L3GXXXX_ERROR_* negative error code, see #l3gxxxx_error_codes_t */ int l3gxxxx_init(l3gxxxx_t *dev, const l3gxxxx_params_t *params); #if IS_USED(MODULE_L3GXXXX_CONFIG) || DOXYGEN /** * @brief Set sensor mode * * @note This function is available only if module `l3gxxxx_config` is used. * * @param[in] dev device descriptor of the L3Gxxxx sensor * @param[in] odr output data rate (ODR) and LPF2 cutoff frequency * @param[in] x enable X axis measurements if true * @param[in] y enable Y axis measurements if true * @param[in] z enable Z axis measurements if true * * @retval L3GXXXX_OK on success * @retval L3GXXXX_ERROR_* negative error code, see #l3gxxxx_error_codes_t */ int l3gxxxx_set_mode(l3gxxxx_t *dev, l3gxxxx_odr_t odr, bool x, bool y, bool z); /** * @brief Set full scale * * @note This function is available only if module `l3gxxxx_config` is used. * * @param[in] dev device descriptor of the L3Gxxxx sensor * @param[in] scale fulle scale * * @retval L3GXXXX_OK on success * @retval L3GXXXX_ERROR_* negative error code, see #l3gxxxx_error_codes_t */ int l3gxxxx_set_scale(l3gxxxx_t *dev, l3gxxxx_scale_t scale); #endif /* IS_USED(MODULE_L3GXXXX_CONFIG) || DOXYGEN */ /** @} */ /** * @name Power saving functions * @{ */ /** * @brief Power down the sensor * * Changes the sensor operation mode to power-down mode. In this mode almost all * internal blocks including the gyros are switched off. I2C and SPI interfaces * are still active. The content of the configuration registers is preserved. * * @param[in] dev Device descriptor of L3Gxxxx device to read from * * @retval L3GXXXX_OK on success * @retval L3GXXXX_ERROR_* negative error code, see #l3gxxxx_error_codes_t */ int l3gxxxx_power_down (l3gxxxx_t *dev); /** * @brief Power up the sensor * * Swichtes the sensor back into the last active operation mode. It takes * up to 100 ms since the gyros have to be switched on. * * @param[in] dev Device descriptor of L3Gxxxx device to read from * * @retval L3GXXXX_OK on success * @retval L3GXXXX_ERROR_* negative error code, see #l3gxxxx_error_codes_t */ int l3gxxxx_power_up (l3gxxxx_t *dev); #if IS_USED(MODULE_L3GXXXX_SLEEP) || DOXYGEN /** * @brief Sleep mode * * Activates the sleep mode of the sensor. In this mode, measurements for all * axes are disabled, but the gyroscopes remain on. To return from sleep mode, * function #l3gxxxx_wake_up is used. * * @note This function is available only if module `l3gxxxx_sleep` is used. * * @param[in] dev Device descriptor of L3Gxxxx device to read from * * @retval L3GXXXX_OK on success * @retval L3GXXXX_ERROR_* negative error code, see #l3gxxxx_error_codes_t */ int l3gxxxx_sleep (l3gxxxx_t *dev); /** * @brief Wake-up the sensor * * Swichtes the sensor back into the last active operation mode. It takes only * 1/ODR when LPF2 is disabled and 6/ODR when LPF2 is enabled to * continue measurements. * * @note This function is available only if module `l3gxxxx_sleep` is used. * * @param[in] dev Device descriptor of L3Gxxxx device to read from * * @retval L3GXXXX_OK on success * @retval L3GXXXX_ERROR_* negative error code, see #l3gxxxx_error_codes_t */ int l3gxxxx_wake_up (l3gxxxx_t *dev); #endif /* IS_USED(MODULE_L3GXXXX_SLEEP) || DOXYGEN */ /** @} */ /** * @name Basic sensor data handling * @{ */ /** * @brief Data ready status function * * This function returns the number of new data samples that are ready to be * read or 0 if no new data samples are available. * * If the FIFO is not used or used in bypass mode (#L3GXXXX_BYPASS), the * maximum number of available data samples is 1. If another FIFO mode is * used, the number of available data samples is equal to the number of * new data samples in the FIFO. * * @param[in] dev device descriptor of the L3Gxxxx sensor * * @return number of data samples available for read or negative error code, * see #l3gxxxx_error_codes_t */ int l3gxxxx_data_ready(const l3gxxxx_t *dev); /** * @brief Read last sample of angular rates in millidegree per second (mpds) * * Raw output data are read from the sensor and converted to angular rates * in millidegrees per second (mdps). The resolution of the angular rates * depends on the configured full scale value as follows: * *
* | Full Scale | Resolution | Driver symbol | Remark | * | -----------:|-----------------:|:------------------------|:--------------------------| * | ±245 dps | 8.75 mdps / LSB | #L3GXXXX_SCALE_245_DPS | | * | ±500 dps | 17.50 mdps / LSB | #L3GXXXX_SCALE_500_DPS | not available on A3G4250D | * | ±2000 dps | 70.00 mdps / LSB | #L3GXXXX_SCALE_2000_DPS | not available on A3G4250D | *

* * @note If the FIFO is enabled by module `l3gxxxxx_fifo`, the function * returns only the last sample. To read all samples from the FIFO, function * l3gxxxx_read_fifo has to be used. * * @param[in] dev device descriptor of the L3Gxxxx sensor * @param[out] data last sample of angular rates in mdps * * @retval L3GXXXX_OK on success * @retval L3GXXXX_ERROR_* negative error code, see #l3gxxxx_error_codes_t */ int l3gxxxx_read(const l3gxxxx_t *dev, l3gxxxx_data_t *data); /** * @brief Read last sample of raw output data as 16 bit two's complements * * @note If the FIFO is enabled by module `l3gxxxxx_fifo`, the function * returns only the last sample. To read all samples from the FIFO, function * l3gxxxx_read_raw_fifo has to be used. * * @param[in] dev device descriptor of the L3Gxxxx sensor * @param raw last sample of raw output data as 16 bit two's * complements * * @retval L3GXXXX_OK on success * @retval L3GXXXX_ERROR_* negative error code, see #l3gxxxx_error_codes_t */ int l3gxxxx_read_raw(const l3gxxxx_t *dev, l3gxxxx_raw_data_t *raw); /** @} */ #if IS_USED(MODULE_L3GXXXX_FIFO) || DOXYGEN /** * @name FIFO handling * @{ */ #if IS_USED(MODULE_L3GXXXX_CONFIG) || DOXYGEN /** * @brief Set FIFO mode and watermark level (threshold) * * The FIFO buffer can work in seven different modes and is able to store * up to 32 data samples, see #l3gxxxx_fifo_mode_t. The use of the FIFO allows * to reduce the interaction events of the MCU with the sensor and thus to * save power. * * The watermark level can be used to define the number of raw output data * samples that have to be stored in the FIFO before the watermark flag is * set and the #L3GXXXX_INT_FIFO_WATERMARK is triggered, if enabled. The * watermark flag is set and the interrupt #L3GXXXX_INT_FIFO_WATERMARK is * triggered when the number of samples stored in the FIFO becomes greater * than this watermark level (threshold). * * @note This function is available only if modules `l3gxxxx_fifo` * and `l3gxxxx_config` are used. * * @param[in] dev device descriptor of the L3Gxxxx sensor * @param[in] mode FIFO mode * @param[in] watermark FIFO watermark (ignored in bypass mode) * * @retval L3GXXXX_OK on success * @retval L3GXXXX_ERROR_* negative error code, see #l3gxxxx_error_codes_t */ int l3gxxxx_set_fifo_mode(l3gxxxx_t *dev, l3gxxxx_fifo_mode_t mode, uint8_t watermark); #endif /* IS_USED(MODULE_L3GXXXX_CONFIG) || DOXYGEN */ /** * @brief Get all samples of angular rates stored in the FIFO (unit mdps) * * This function reads all samples of raw output data from the FIFO and * converts them to angular rates in millidegrees per second (mdps) according * to the configured full scale. For details about the resolution of these * angular rates see l3gxxxx_read. * * In bypass mode (#L3GXXXX_BYPASS), it returns only the last sample. * * @note This function is available only if module `l3gxxxx_fifo` is used. * * @param[in] dev device descriptor of the L3Gxxxx sensor * @param[out] data array for up to 32 samples of angular rates in mdps * * @return number of data samples read on success, or negative error code, * see #l3gxxxx_error_codes_t */ int l3gxxxx_read_fifo(const l3gxxxx_t *dev, l3gxxxx_data_fifo_t data); /** * @brief Get all samples of raw output data stored in the FIFO * * This function reads all samples of raw output data from the FIFO. * In bypass mode (#L3GXXXX_BYPASS), it returns only the last raw * output data sample. * * @note This function is available only if module `l3gxxxx_fifo` is used. * * @param[in] dev device descriptor of the L3Gxxxx sensor * @param[out] raw array for up to 32 raw output data as two's complement * * @return number of data samples read on success, or negative error code, * see #l3gxxxx_error_codes_t */ int l3gxxxx_read_raw_fifo(const l3gxxxx_t *dev, l3gxxxx_raw_data_fifo_t raw); #endif /* IS_USED(MODULE_L3GXXXX_FIFO) || DOXYGEN */ /** @} */ #if IS_USED(MODULE_L3GXXXX_CONFIG) || DOXYGEN /** * @name Filter configuration and handling * @{ */ /** * @brief Filter selection for raw output data * * L3Gxxxx supports a combination of a high pass filter (HPF) and a second * low pass filter (LPF2). This function selects the combination of the HPF * and the LPF2 applied to raw output data. * * @note * - This function is available only if module `l3gxxxx_config` is used. * - The filter selection for the output data also affects the filter * selection for event interrupt generation. If the HPF is enabled for * filtering the output data, it is also active for filtering the sensor * data used for interrupt generation if the LPF2 is enabled for interrupt * generation. * * @param[in] dev device descriptor of the L3Gxxxx sensor * @param[in] filter selected filters for output values * * @retval L3GXXXX_OK on success * @retval L3GXXXX_ERROR_* negative error code, see #l3gxxxx_error_codes_t */ int l3gxxxx_select_output_filter(l3gxxxx_t *dev, l3gxxxx_filter_sel_t filter); /** * @brief Config HPF (high pass filter) for output data * * The cutoff frequency of the HPF depends on the selected output data rate * (ODR). The following table shows the possible values of parameter \p cutoff * and the cutoff frequencies for the according ODRs. All frequencies are * given in Hz. * *
* | cutoff / ODR | 12.5 | 25 | 50 | 100 | 200 | 400 | 800 | * |-------------:|:-----:|:-----:|:-----:|:----:|:----:|:----:|:---:| * | 0 | 1 | 2 | 4 | 8 | 15 | 30 | 56 | * | 1 | 0.5 | 1 | 2 | 4 | 8 | 15 | 30 | * | 2 | 0.2 | 0.5 | 1 | 2 | 4 | 8 | 15 | * | 3 | 0.1 | 0.2 | 0.5 | 1 | 2 | 4 | 8 | * | 4 | 0.05 | 0.1 | 0.2 | 0.5 | 1 | 2 | 4 | * | 5 | 0.02 | 0.05 | 0.1 | 0.2 | 0.5 | 1 | 2 | * | 6 | 0.01 | 0.02 | 0.05 | 0.1 | 0.2 | 0.5 | 1 | * | 7 | 0.005 | 0.01 | 0.02 | 0.05 | 0.1 | 0.2 | 0.5 | * | 8 | 0.002 | 0.005 | 0.01 | 0.02 | 0.05 | 0.1 | 0.2 | * | 9 | 0.001 | 0.002 | 0.005 | 0.01 | 0.02 | 0.05 | 0.1 | *

* * @note This function is available only if module `l3gxxxx_config` is used. * * @param[in] dev device descriptor of the L3Gxxxx sensor * @param[in] mode high pass filter mode, see #l3gxxxx_hpf_mode_t * @param[in] cutoff cutoff frequency (depends on ODR) [0 ... 9] * * @retval L3GXXXX_OK on success * @retval L3GXXXX_ERROR_* negative error code, see #l3gxxxx_error_codes_t */ int l3gxxxx_config_hpf(const l3gxxxx_t *dev, l3gxxxx_hpf_mode_t mode, uint8_t cutoff); /** * @brief Set HPF (high pass filter) reference * * Used to set the reference for HPF in reference mode #L3GXXXX_HPF_REFERENCE * and to reset the HPF in autoreset mode #L3GXXXX_HPF_AUTORESET. * Reference is given as two's complement. * * @note This function is available only if module `l3gxxxx_config` is used. * * @param[in] dev device descriptor of the L3Gxxxx sensor * @param[in] ref reference in #L3GXXXX_HPF_REFERENCE mode, otherwise ignored * * @retval L3GXXXX_OK on success * @retval L3GXXXX_ERROR_* negative error code, see #l3gxxxx_error_codes_t */ int l3gxxxx_set_hpf_ref(const l3gxxxx_t *dev, int8_t ref); /** * @brief Get HPF (high pass filter) reference * * Returns the content of the REFERENCE register. In normal mode * #L3GXXXX_HPF_NORMAL, it is also used to reset the HPF. * * @note This function is available only if module `l3gxxxx_config` is used. * * @param[in] dev device descriptor of the L3Gxxxx sensor * @param[out] ref reference * * @retval L3GXXXX_OK on success * @retval L3GXXXX_ERROR_* negative error code, see #l3gxxxx_error_codes_t */ int l3gxxxx_get_hpf_ref(const l3gxxxx_t *dev, int8_t *ref); #endif /* IS_USED(MODULE_L3GXXXX_CONFIG) || DOXYGEN */ /** @} */ #if IS_USED(MODULE_L3GXXXX_IRQ) || DOXYGEN /** * @name Interrupt configuration and handling * @{ */ /** * @brief Enable or disable event and/or data interrupts on signal `INT1` and `INT2/DRDY` * * This function is used to enable or disable interrupts. The parameter \p mask * is the ORed value of the interrupts that are enabled or disabled by the * function call. * * @pre MCU GPIO pins for the `INT1` signal respectively the `INT2/DRDY` * signal have to be defined for enabled interrupts * (l3gxxxx_params_t::int1_pin and l3gxxxx_params_t::int2_pin). * * @note This function is available only if module `l3gxxxx_irq_data` and/or * module `l3gxxxx_irq_event` are used. * * @param[in] dev device descriptor of the L3Gxxxx sensor * @param[in] mask interrupts to be enabled or disabled * @param[in] enable enable the interrupts if true, otherwise disable them * * @retval L3GXXXX_OK on success * @retval L3GXXXX_ERROR_* negative error code, see #l3gxxxx_error_codes_t */ int l3gxxxx_enable_int(const l3gxxxx_t *dev, l3gxxxx_int_types_t mask, bool enable); /** * @brief Wait for event and/or data interrupts on signals `INT1` and `INT2/DRDY` * * The function waits for a configured interrupt and returns the sources of * triggered interrupts. Since data interrupts (data ready and FIFO status) * and event interrupts (axis movement and wake-up) use different signals, * both data and event interrupts can occur simultaneously. The return * value of type l3gxxxx_int_src_t contains all sources for which the interrupt * conditions are fulfilled at the same time. * * @pre MCU GPIO pins for the `INT1` signal respectively the `INT2/DRDY` * signal have to be defined for enabled interrupts * (l3gxxxx_params_t::int1_pin and l3gxxxx_params_t::int2_pin). * * @note This function is available only if module `l3gxxxx_irq_data` and/or * module `l3gxxxx_irq_event` are used. * * @param[in] dev device descriptor of the L3Gxxxx sensor * * @retval L3GXXXX_OK on success * @retval L3GXXXX_ERROR_* negative error code, see #l3gxxxx_error_codes_t */ l3gxxxx_int_src_t l3gxxxx_wait_int(l3gxxxx_t *dev); #if IS_USED(MODULE_L3GXXXX_IRQ_EVENT) || DOXYGEN /** * @brief Set new configuration for event interrupt generation * * The event interrupt generator produces interrupts (axis movement and wake-up) * on signal `INT1` whenever the angular rate of one or more axes becomes higher * or lower than defined thresholds. * * This function can be used at runtime to change the configuration of * the interrupt conditions for event interrupt generation. This includes * thresholds for all axes, enabled threshold interrupts, filter selection * used for interrupt generation and other parameters, see * l3gxxxx_int_event_cfg_t for details. * * @note This function is available only if module `l3gxxxx_irq_event` is used. * * @param[in] dev device descriptor of the L3Gxxxx sensor * @param[in] cfg event interrupt generator configuration * * @retval L3GXXXX_OK on success * @retval L3GXXXX_ERROR_* negative error code, see #l3gxxxx_error_codes_t */ int l3gxxxx_set_int_event_cfg(const l3gxxxx_t *dev, const l3gxxxx_int_event_cfg_t *cfg); #if IS_USED(MODULE_L3GXXXX_CONFIG) || DOXYGEN /** * @brief Get current configuration of event interrupt generation * * This function can be used to retrieve the configuration of interrupt * conditions currently used to generate event interrupts. See * l3gxxxx_int_event_cfg_t for details. * * @note This function is available only if module `l3gxxxx_irq_event` and * module `l3gxxxx_irq_config` are used. * * @param[in] dev device descriptor of the L3Gxxxx sensor * @param[out] cfg event interrupt generator configuration * * @retval L3GXXXX_OK on success * @retval L3GXXXX_ERROR_* negative error code, see #l3gxxxx_error_codes_t */ int l3gxxxx_get_int_event_cfg(const l3gxxxx_t *dev, l3gxxxx_int_event_cfg_t *cfg); #endif /* IS_USED(MODULE_L3GXXXX_CONFIG) || DOXYGEN */ #endif /* IS_USED(MODULE_L3GXXXX_IRQ_EVENT) || DOXYGEN */ /** @} */ #endif /* IS_USED(MODULE_L3GXXXX_IRQ) || DOXYGEN */ /** * @name Low level interface functions * @{ */ /** * @brief Direct write to register * * @note This function should only be used to do something special that * is not covered by the high level interface AND if you exactly know what you * do and what effects it might have. Please be aware that it might affect the * high level interface. * * @param[in] dev device descriptor of the L3Gxxxx sensor * @param[in] reg address of the first register to be changed * @param[in] data pointer to the data to be written to the register * @param[in] len number of bytes to be written to the register * @retval L3GXXXX_OK on success * @retval L3GXXXX_ERROR_* negative error code, see #l3gxxxx_error_codes_t */ int l3gxxxx_reg_write(const l3gxxxx_t *dev, uint8_t reg, const uint8_t *data, uint8_t len); /** * @brief Direct read from register * * @note This function should only be used to do something special that * is not covered by the high level interface AND if you exactly know what you * do and what effects it might have. Please be aware that it might affect the * high level interface. * * @param[in] dev device descriptor of the L3Gxxxx sensor * @param[in] reg address of the first register to be read * @param[out] data pointer to the data to be read from the register * @param[in] len number of bytes to be read from the register * @retval L3GXXXX_OK on success * @retval L3GXXXX_ERROR_* negative error code, see #l3gxxxx_error_codes_t */ int l3gxxxx_reg_read(const l3gxxxx_t *dev, uint8_t reg, uint8_t *data, uint8_t len); /** @} */ #ifdef __cplusplus } #endif #endif /* L3GXXXX_H */ /** @} */