/* * Copyright (C) 2014 Freie Universität Berlin * * This file is subject to the terms and conditions of the GNU Lesser General * Public License v2.1. See the file LICENSE in the top level directory for more * details. */ /** * @ingroup cpu_stm32f0 * @{ * * @file * @brief Low-level ADC driver implementation * * @author Hauke Petersen * * @} */ #include #include #include "cpu.h" #include "periph/adc.h" #include "periph_conf.h" /* guard in case that no ADC device is defined */ #if ADC_NUMOF typedef struct { uint8_t precision; } adc_config_t; adc_config_t config[ADC_NUMOF]; int adc_init(adc_t dev, adc_precision_t precision) { ADC_TypeDef *adc = 0; adc_poweron(dev); switch (dev) { #if ADC_0_EN case ADC_0: adc = ADC_0_DEV; ADC_0_PORT_CLKEN(); ADC_0_PORT->MODER |= ((3 << ADC_0_CH0_PIN) | (3 << ADC_0_CH1_PIN) | (3 << ADC_0_CH2_PIN) | (3 << ADC_0_CH3_PIN) | (3 << ADC_0_CH4_PIN) | (3 << ADC_0_CH5_PIN)); break; #endif } /* reset control registers */ adc->CR = 0; adc->CFGR1 = 0; adc->CFGR2 = 0; /* set resolution */ config[dev].precision = (6 + (2 * precision)); switch (precision) { case ADC_RES_6BIT: adc->CFGR1 |= ADC_CFGR1_RES_0 | ADC_CFGR1_RES_1; break; case ADC_RES_8BIT: adc->CFGR1 |= ADC_CFGR1_RES_1; break; case ADC_RES_10BIT: adc->CFGR1 |= ADC_CFGR1_RES_0; break; case ADC_RES_12BIT: break; case ADC_RES_14BIT: case ADC_RES_16BIT: adc_poweroff(dev); return -1; break; } /* configure sampling time to 41.5 cycles */ adc->SMPR = 4; /* enable the ADC module */ adc->CR = ADC_CR_ADEN; return 0; } int adc_sample(adc_t dev, int channel) { ADC_TypeDef *adc = 0; switch (dev) { #if ADC_0_EN case ADC_0: adc = ADC_0_DEV; switch (channel) { case 0: adc->CHSELR = (1 << ADC_0_CH0); break; case 1: adc->CHSELR = (1 << ADC_0_CH1); break; case 2: adc->CHSELR = (1 << ADC_0_CH2); break; case 3: adc->CHSELR = (1 << ADC_0_CH3); break; case 4: adc->CHSELR = (1 << ADC_0_CH4); break; case 5: adc->CHSELR = (1 << ADC_0_CH5); break; default: return -1; } break; #endif } /* start single conversion */ adc->CR |= ADC_CR_ADSTART; /* wait until conversion is complete */ while (!(adc->ISR & ADC_ISR_EOC)); /* read and return result */ return (int)adc->DR; } void adc_poweron(adc_t dev) { switch (dev) { #if ADC_0_EN case ADC_0: ADC_0_CLKEN(); break; #endif #if ADC_1_EN case ADC_1: ADC_1_CLKEN(); break; #endif } } void adc_poweroff(adc_t dev) { switch (dev) { #if ADC_0_EN case ADC_0: ADC_0_CLKDIS(); break; #endif #if ADC_1_EN case ADC_1: ADC_1_CLKDIS(); break; #endif } } /** * @brief Helper function to map a converted value to the given integer range. * * This function is useful for converting sampled ADC values into their physical representation. * * The min value is asserted to be smaller than the max value. * * @param[in] dev the ADC device to read the precision value from (as input interval) * @param[in] value the value to map * @param[in] min the lower bound of the target interval * @param[in] max the upper bound of the target interval * * @return the mapped value */ int adc_map(adc_t dev, int value, int min, int max) { return 0; } /** * @brief Helper function to map a converted value to the given float range * * @see adc_map * * @param[in] dev the ADC device to read the precision value from (as input interval) * @param[in] value the value to map * @param[in] min the lower bound of the target interval * @param[in] max the upper bound of the target interval * * @return the mapped value */ float adc_mapf(adc_t dev, int value, float min, float max) { return 0.0; } #endif /* ADC_NUMOF */