/* * Copyright (C) 2017 OTA keys S.A. * * This file is subject to the terms and conditions of the GNU Lesser * General Public License v2.1. See the file LICENSE in the top level * directory for more details. */ /** * @brief Compute clock constants for STM32F[2|4|7] CPUs * * * @author Vincent Dupont * * @} */ #include #include #include #include #include #include #include "clk_conf.h" #define ENABLE_DEBUG 0 #if ENABLE_DEBUG #define DEBUG(...) fprintf(stderr, __VA_ARGS__) #else #define DEBUG(...) #endif /** * @brief Check if N/P pair is valid * * Check if N/P (alternatively N/Q or N/R) pair is valid with given @p vco_in and * @p pll_out * * @param[in] n * @param[in] p * @param[in] vco_in * @param[in] pll_out * * @return 1 if pair is valid, 0 otherwise */ static int is_n_ok(const pll_cfg_t *cfg, unsigned n, unsigned p, unsigned vco_in, unsigned pll_out) { if (n >= cfg->min_n && n <= cfg->max_n && vco_in * n >= cfg->min_vco_output && vco_in * n <= cfg->max_vco_output && vco_in * n / p == pll_out) { return 1; } else { return 0; } } /** * @brief Compute PLL factors * * @param[in] pll_in PLL input frequency * @param[in] pll_p_out PLL P output frequency (0 if P is not needed) * @param[in] pll_q_out PLL Q output frequency (0 if Q is not needed) * @param[in] pll_r_out PLL R output frequency (0 if R is not needed) * @param[in,out] m M factor, can be preset (0, if it has to be calculated) * @param[out] n N factor * @param[out] p P factor * @param[out] q Q factor * @param[out] r R factor * * @return -1 if no P,N pair can be computed with given @p pll_in and @p pll_p_out * @return 1 if no Q can be computed, M, N and P are valid * @return 2 if no R can be computed, M, M and P are valid * @return 3 if no Q nor R can be computed, M, M and P are valid * @return 0 if M, N, P, Q, R are valid */ static int compute_pll(const pll_cfg_t *cfg, unsigned pll_in, unsigned pll_p_out, unsigned pll_q_out, unsigned pll_r_out, unsigned *m, unsigned *n, unsigned *p, unsigned *q, unsigned *r) { (void)pll_r_out; (void)r; int res = 0; unsigned vco_in; if (*m == 0) { unsigned found_m = 0; unsigned found_n; unsigned found_p; unsigned found_q; unsigned found_r; unsigned found_res; *m = cfg->min_m; while (*m <= cfg->max_m && (res = compute_pll(cfg, pll_in, pll_p_out, pll_q_out, pll_r_out, m, n, p, q, r)) != 0) { if (res > 0 && !found_m) { found_m = *m; found_n = *n; found_p = *p; found_q = *q; found_r = *r; found_res = res; } *m += cfg->inc_m; } if (res == 0) { return 0; } if (found_m) { *m = found_m; *n = found_n; *p = found_p; *q = found_q; *r = found_r; return found_res; } else { return -1; } } else { vco_in = pll_in / *m; DEBUG("M=%u, vco_in=%u\n", *m, vco_in); } if (*m < cfg->min_m || *m > cfg->max_m || vco_in < cfg->min_vco_input || vco_in > cfg->max_vco_input) { DEBUG("Invalid M=%u\n", *m); return -1; } if (pll_p_out) { DEBUG("Computing P for freq=%u\n", pll_p_out); for (*p = cfg->max_p; *p >= cfg->min_p; *p -= cfg->inc_p) { *n = *p * pll_p_out / vco_in; DEBUG("Trying P=%u: N=%u\n", *p, *n); if (is_n_ok(cfg, *n, *p, vco_in, pll_p_out)) { DEBUG("Found M=%u, N=%u, P=%u\n", *m, *n, *p); break; } } if (*p < cfg->min_p) { *p += cfg->inc_p; } if (!is_n_ok(cfg, *n, *p, vco_in, pll_p_out)) { return -1; } } if (pll_q_out) { DEBUG("Computing Q for freq=%u\n", pll_q_out); for (*q = cfg->max_q; *q >= cfg->min_q; *q -= cfg->inc_q) { if (!pll_p_out) { *n = *q * pll_q_out / vco_in; } DEBUG("Trying Q=%u: N=%u\n", *q, *n); if (is_n_ok(cfg, *n, *q, vco_in, pll_q_out)) { DEBUG("Found M=%u, N=%u, Q=%u\n", *m, *n, *q); break; } } if (*q < cfg->min_q) { *q += cfg->inc_q; } if (!is_n_ok(cfg, *n, *q, vco_in, pll_q_out)) { *q = 0; res |= 1; } } /* todo, compute r */ return res; } static void usage(char **argv) { fprintf(stderr, "usage: %s [pll_i2s_src] " "[pll_i2s_q_out] [pll_sai_q_out]\n", argv[0]); } #define HSI 0 #define HSE 1 int main(int argc, char **argv) { int char_offset = 0; const unsigned int* stm32_model_p = stm32_f_model; const clk_cfg_t* stm32_clk_cfg_p = stm32_f_clk_cfg; int model_max = MODEL_F_MAX; if (argc < 2) { usage(argv); return 1; } if (strlen(argv[1]) < 9 || !isdigit(argv[1][6]) || !isdigit(argv[1][7]) || !isdigit(argv[1][8]) || ((argv[1][5] != 'f') && (argv[1][5] != 'F') /* && (argv[1][5] != 'l') && (argv[1][5] != 'L') */)) { if (strlen(argv[1]) < 10 || !isdigit(argv[1][7]) || !isdigit(argv[1][8]) || !isdigit(argv[1][9]) || ((argv[1][5] != 'm') && (argv[1][5] != 'M')) || ((argv[1][6] != 'p') && (argv[1][5] != 'p')) ) { fprintf(stderr, "Invalid model : %s\n", argv[1]); return 1; } char_offset = 1; stm32_model_p = stm32_model_mp; stm32_clk_cfg_p = stm32_mp_clk_cfg; model_max = MODEL_MP_MAX; } int model = atoi(argv[1] + 6 + char_offset); int i; for (i = 0; i < model_max; i++) { if (stm32_model_p[i] == model) { break; } } if (i == model_max) { fprintf(stderr, "Unsupported CPU model %s\n", argv[1]); return 1; } const clk_cfg_t *cfg = &stm32_clk_cfg_p[i]; /* print help for given cpu */ if (argc < 5) { usage(argv); fprintf(stderr, "Max values for stm32f%03d:\n", model); fprintf(stderr, " Max coreclock: %u Hz\n" " Max APB1: %u Hz\n" " Max APB2: %u Hz\n", cfg->max_coreclock, cfg->max_apb1, cfg->max_apb2); fprintf(stderr, "Additional PLLs:\n" " PLL I2S: %d\n" " PLL SAI: %d\n" " Alternate 48MHz source: ", cfg->has_pll_i2s, cfg->has_pll_sai); if (cfg->has_alt_48MHz & ALT_48MHZ_I2S) { fprintf(stderr, "PLL I2S\n"); } else if (cfg->has_alt_48MHz & ALT_48MHZ_SAI) { fprintf(stderr, "PLL SAI\n"); } else { fprintf(stderr, "None\n"); } return 0; } /* parse command line arguments */ unsigned coreclock = atoi(argv[2]); unsigned pll_in = atoi(argv[3]); int pll_src; if (pll_in == 0) { pll_in = cfg->hsi; pll_src = HSI; } else { pll_src = HSE; } unsigned is_lse = atoi(argv[4]) ? 1 : 0; unsigned pll_i2s_input = 0; if (argc > 5) { pll_i2s_input = atoi(argv[5]); } unsigned pll_i2s_p_out = 0; unsigned pll_i2s_q_out = 0; if (argc > 6) { pll_i2s_q_out = atoi(argv[6]); } unsigned pll_sai_p_out = 0; unsigned pll_sai_q_out = 0; if (argc > 7) { pll_sai_q_out = atoi(argv[7]); } if (cfg->max_coreclock && coreclock > cfg->max_coreclock) { fprintf(stderr, "Invalid coreclock (max=%u)\n", cfg->max_coreclock); return 1; } fprintf(stderr, "Computing settings for stm32f%03d CPU...\n", model); unsigned m = 0; unsigned n = 0; unsigned p = 0; unsigned q = 0; unsigned r = 0; unsigned m_i2s = 0; unsigned n_i2s = 0; unsigned p_i2s = 0; unsigned q_i2s = 0; unsigned r_i2s = 0; unsigned m_sai = 0; unsigned n_sai = 0; unsigned p_sai = 0; unsigned q_sai = 0; unsigned r_sai = 0; bool use_alt_48MHz = false; unsigned clock_48MHz = cfg->need_48MHz ? 48000000U : 0; if ((cfg->hsi_prediv) && (pll_src == HSI)) { m = cfg->hsi_prediv; } /* main PLL */ /* try to match coreclock with P output and 48MHz for Q output (USB) */ switch (compute_pll(&cfg->pll, pll_in, coreclock, clock_48MHz, 0, &m, &n, &p, &q, &r)) { case -1: /* no config available */ fprintf(stderr, "Unable to compute main PLL factors\n"); return 1; case 1: /* Q not OK */ fprintf(stderr, "Need to use an alternate 48MHz src..."); if (cfg->has_pll_i2s && (cfg->has_alt_48MHz & ALT_48MHZ_I2S) == ALT_48MHZ_I2S) { puts("PLL I2S"); use_alt_48MHz = true; if (pll_i2s_q_out != 0 && pll_i2s_q_out != 48000000U) { fprintf(stderr, "Invalid PLL I2S Q output freq: %u\n", pll_i2s_q_out); return 1; } pll_i2s_q_out = 48000000U; } else if (cfg->has_pll_sai && (cfg->has_alt_48MHz & ALT_48MHZ_SAI)) { fprintf(stderr, "PLL SAI..."); use_alt_48MHz = true; if ((cfg->has_alt_48MHz & ALT_48MHZ_P) && (pll_sai_p_out == 0 || pll_sai_p_out == 48000000U)) { fprintf(stderr, "P\n"); pll_sai_p_out = 48000000U; } else if (!(cfg->has_alt_48MHz & ALT_48MHZ_P) && (pll_sai_q_out == 0 || pll_sai_q_out == 48000000U)) { fprintf(stderr, "Q\n"); pll_sai_q_out = 48000000U; } else { if (cfg->has_alt_48MHz & ALT_48MHZ_P) { fprintf(stderr, "Invalid PLL SAI P output freq: %u\n", pll_sai_p_out); } else { fprintf(stderr, "Invalid PLL SAI Q output freq: %u\n", pll_sai_q_out); } return 1; } } else { fprintf(stderr, "No other source available\n"); return 1; } break; default: break; } /* PLL I2S */ if (pll_i2s_p_out || pll_i2s_q_out) { unsigned *_m; unsigned _in; if (cfg->has_pll_i2s_m) { _m = &m_i2s; } else { _m = &m; } if (cfg->has_pll_i2s_alt_input && pll_i2s_input) { _in = pll_i2s_input; } else { _in = pll_in; } if (compute_pll(&cfg->pll, _in, pll_i2s_p_out, pll_i2s_q_out, 0, _m, &n_i2s, &p_i2s, &q_i2s, &r_i2s) != 0) { fprintf(stderr, "Unable to compute 48MHz output using PLL I2S\n"); return 1; } } /* PLL SAI */ if (pll_sai_p_out || pll_sai_q_out) { if (compute_pll(&cfg->pll, pll_in, pll_sai_p_out, pll_sai_q_out, 0, &m_sai, &n_sai, &p_sai, &q_sai, &r_sai) != 0) { puts("Unable to compute 48MHz output using PLL I2S"); return 1; } if (!cfg->has_pll_sai_m && m != m_sai) { m = m_sai; DEBUG("Retry to compute main PLL with M=%u\n", m); if (compute_pll(&cfg->pll, pll_in, coreclock, clock_48MHz, 0, &m, &n, &p, &q, &r) < 0) { fprintf(stderr, "Unable to compute 48MHz output using PLL I2S\n"); return 1; } } } /* APB prescalers */ unsigned apb1_pre; unsigned apb2_pre; unsigned apb3_pre; for (apb1_pre = 1; apb1_pre <= 16; apb1_pre <<= 1) { if (coreclock / apb1_pre <= cfg->max_apb1) { break; } } if (cfg->family != STM32F0) { for (apb2_pre = 1; apb2_pre <= 16; apb2_pre <<= 1) { if (coreclock / apb2_pre <= cfg->max_apb2) { break; } } } if (cfg->family == STM32MP1) { for (apb3_pre = 1; apb3_pre <= 16; apb3_pre <<= 1) { if (coreclock / apb3_pre <= cfg->max_apb3) { break; } } } /* Print constants */ fprintf(stderr, "==============================================================\n"); fprintf(stderr, "Please copy the following code into your board's periph_conf.h\n\n"); printf("/**\n" " * @name Clock settings\n" " *\n" " * @note This is auto-generated from\n" " * `cpu/stm32_common/dist/clk_conf/clk_conf.c`\n" " * @{\n" " */\n"); printf("/* give the target core clock (HCLK) frequency [in Hz],\n" " * maximum: %uMHz */\n", cfg->max_coreclock / 1000000U); printf("#define CLOCK_CORECLOCK (%uU)\n", coreclock); printf("/* 0: no external high speed crystal available\n" " * else: actual crystal frequency [in Hz] */\n" "#define CLOCK_HSE (%uU)\n", pll_src ? pll_in : 0); printf("/* 0: no external low speed crystal available,\n" " * 1: external crystal available (always 32.768kHz) */\n" "#define CLOCK_LSE (%uU)\n", is_lse); printf("/* peripheral clock setup */\n"); if (cfg->family != STM32MP1) { printf("#define CLOCK_AHB_DIV RCC_CFGR_HPRE_DIV1\n" "#define CLOCK_AHB (CLOCK_CORECLOCK / 1)\n"); } if (cfg->family == STM32F0) { printf("#define CLOCK_APB1_DIV RCC_CFGR_PPRE_DIV%u /* max %uMHz */\n" "#define CLOCK_APB1 (CLOCK_CORECLOCK / %u)\n", apb1_pre, cfg->max_apb1 / 1000000U, apb1_pre); printf("#define CLOCK_APB2 (CLOCK_APB1)\n"); } else if (cfg->family == STM32MP1) { /* TODO: Set to 1 by default, conf_clk is not able to handle this parameter */ printf("#define CLOCK_MCU_DIV RCC_MCUDIVR_MCUDIV_1 /* max %uMHz */\n" "#define CLOCK_MCU (CLOCK_CORECLOCK / 1)\n", cfg->max_coreclock / 1000000U); printf("#define CLOCK_APB1_DIV RCC_APB1DIVR_APB1DIV_%u /* max %uMHz */\n" "#define CLOCK_APB1 (CLOCK_CORECLOCK / %u)\n", apb1_pre, cfg->max_apb1 / 1000000U, apb1_pre); printf("#define CLOCK_APB2_DIV RCC_APB2DIVR_APB2DIV_%u /* max %uMHz */\n" "#define CLOCK_APB2 (CLOCK_CORECLOCK / %u)\n", apb2_pre, cfg->max_apb2 / 1000000U, apb2_pre); printf("#define CLOCK_APB3_DIV RCC_APB3DIVR_APB3DIV_%u /* max %uMHz */\n" "#define CLOCK_APB3 (CLOCK_CORECLOCK / %u)\n", apb3_pre, cfg->max_apb3 / 1000000U, apb3_pre); } else { printf("#define CLOCK_APB1_DIV RCC_CFGR_PPRE1_DIV%u /* max %uMHz */\n" "#define CLOCK_APB1 (CLOCK_CORECLOCK / %u)\n", apb1_pre, cfg->max_apb1 / 1000000U, apb1_pre); printf("#define CLOCK_APB2_DIV RCC_CFGR_PPRE2_DIV%u /* max %uMHz */\n" "#define CLOCK_APB2 (CLOCK_CORECLOCK / %u)\n", apb2_pre, cfg->max_apb2 / 1000000U, apb2_pre); } if (cfg->family == STM32F0 || cfg->family == STM32F1 || cfg->family == STM32F3) { printf("\n/* PLL factors */\n"); printf("#define CLOCK_PLL_PREDIV (%u)\n", m); printf("#define CLOCK_PLL_MUL (%u)\n", n); } else { printf("\n/* Main PLL factors */\n"); printf("#define CLOCK_PLL_M (%u)\n", m); printf("#define CLOCK_PLL_N (%u)\n", n); printf("#define CLOCK_PLL_P (%u)\n", p); printf("#define CLOCK_PLL_Q (%u)\n", q); } if (pll_i2s_p_out || pll_i2s_q_out) { printf("\n/* PLL I2S configuration */\n"); printf("#define CLOCK_ENABLE_PLL_I2S (1)\n"); if (cfg->has_pll_i2s_alt_input && pll_i2s_input) { printf("#define CLOCK_PLL_I2S_SRC (RCC_PLLI2SCFGR_PLLI2SSRC)\n"); } else { printf("#define CLOCK_PLL_I2S_SRC (0)\n"); } if (cfg->has_pll_i2s_m) { printf("#define CLOCK_PLL_I2S_M (%u)\n", m_i2s); } printf("#define CLOCK_PLL_I2S_N (%u)\n", n_i2s); printf("#define CLOCK_PLL_I2S_P (%u)\n", p_i2s); printf("#define CLOCK_PLL_I2S_Q (%u)\n", q_i2s); } if (pll_sai_p_out || pll_sai_q_out) { printf("\n/* PLL SAI configuration */\n"); printf("#define CLOCK_ENABLE_PLL_SAI (1)\n"); if (cfg->has_pll_sai_m) { printf("#define CLOCK_PLL_SAI_M (%u)\n", m_sai); } printf("#define CLOCK_PLL_SAI_N (%u)\n", n_sai); printf("#define CLOCK_PLL_SAI_P (%u)\n", p_sai); printf("#define CLOCK_PLL_SAI_Q (%u)\n", q_sai); } if (use_alt_48MHz) { printf("\n/* Use alternative source for 48MHz clock */\n"); printf("#define CLOCK_USE_ALT_48MHZ (1)\n"); } printf("/** @} */\n"); return 0; }