/* * Copyright (C) 2015 Freie Universität Berlin * 2015 FreshTemp, LLC. * * This file is subject to the terms and conditions of the GNU Lesser * General Public License v2.1. See the file LICENSE in the top level * directory for more details. */ /** * @ingroup cpu_sam0_common * @ingroup drivers_periph_uart * @{ * * @file * @brief Low-level UART driver implementation * * @author Thomas Eichinger * @author Troels Hoffmeyer * @author Hauke Petersen * @author Dylan Laduranty * @author Benjamin Valentin * * @} */ #include "cpu.h" #include "periph/uart.h" #include "periph/gpio.h" #define ENABLE_DEBUG 0 #include "debug.h" #if defined (CPU_COMMON_SAML1X) || defined (CPU_COMMON_SAMD5X) #define UART_HAS_TX_ISR #endif /* default to fractional baud rate calculation */ #if !defined(CONFIG_SAM0_UART_BAUD_FRAC) && defined(SERCOM_USART_BAUD_FRAC_BAUD) /* SAML21 has no fractional baud rate on SERCOM5 */ #if defined(CPU_SAML21) #define CONFIG_SAM0_UART_BAUD_FRAC 0 #else #define CONFIG_SAM0_UART_BAUD_FRAC 1 #endif #endif /* SAMD20 defines no generic macro */ #ifdef SERCOM_USART_CTRLA_TXPO_PAD0 #undef SERCOM_USART_CTRLA_TXPO #define SERCOM_USART_CTRLA_TXPO(n) ((n) << SERCOM_USART_CTRLA_TXPO_Pos) #endif /** * @brief Allocate memory to store the callback functions & buffers */ #ifdef MODULE_PERIPH_UART_NONBLOCKING #include "tsrb.h" static tsrb_t uart_tx_rb[UART_NUMOF]; static uint8_t uart_tx_rb_buf[UART_NUMOF][UART_TXBUF_SIZE]; #endif static uart_isr_ctx_t uart_ctx[UART_NUMOF]; /** * @brief Get the pointer to the base register of the given UART device * * @param[in] dev UART device identifier * * @return base register address */ static inline SercomUsart *dev(uart_t dev) { return uart_config[dev].dev; } static inline void _syncbusy(SercomUsart *dev) { #ifdef SERCOM_USART_SYNCBUSY_MASK while (dev->SYNCBUSY.reg) {} #else while (dev->STATUS.bit.SYNCBUSY) {} #endif } static inline void _reset(SercomUsart *dev) { dev->CTRLA.reg = SERCOM_USART_CTRLA_SWRST; while (dev->CTRLA.reg & SERCOM_SPI_CTRLA_SWRST) {} #ifdef SERCOM_USART_SYNCBUSY_MASK while (dev->SYNCBUSY.bit.SWRST) {} #else while (dev->STATUS.bit.SYNCBUSY) {} #endif } static void _set_baud(uart_t uart, uint32_t baudrate, uint32_t f_src) { #if IS_ACTIVE(CONFIG_SAM0_UART_BAUD_FRAC) /* Asynchronous Fractional */ /* BAUD + FP / 8 = f_src / (S * f_baud) */ /* BAUD * 8 + FP = (8 * f_src) / (S * f_baud) */ /* S * (BAUD + 8 * FP) = (8 * f_src) / f_baud */ uint32_t baud = (f_src * 8) / baudrate; dev(uart)->BAUD.FRAC.FP = (baud >> 4) & 0x7; /* baud / 16 */ dev(uart)->BAUD.FRAC.BAUD = baud >> 7; /* baud / (8 * 16) */ #else /* Asynchronous Arithmetic */ /* BAUD = 2^16 * (2^0 - 2^4 * f_baud / f_src) */ /* = 2^(16-n) * (2^n - 2^(n+4) * f_baud / f_src) */ /* = 2^(20-n) * (2^(n-4) - 2^n * f_baud / f_src) */ /* 2^n * f_baud < 2^32 -> find the next power of 2 */ uint8_t pow = __builtin_clz(baudrate); /* 2^n * f_baud */ baudrate <<= pow; /* (2^(n-4) - 2^n * f_baud / f_src) */ uint32_t tmp = (1 << (pow - 4)) - baudrate / f_src; uint32_t rem = baudrate % f_src; uint8_t scale = 20 - pow; dev(uart)->BAUD.reg = (tmp << scale) - (rem << scale) / f_src; #endif } static void _configure_pins(uart_t uart) { /* configure RX pin */ if (uart_config[uart].rx_pin != GPIO_UNDEF) { gpio_init(uart_config[uart].rx_pin, GPIO_IN); gpio_init_mux(uart_config[uart].rx_pin, uart_config[uart].mux); } /* configure TX pin */ if (uart_config[uart].tx_pin != GPIO_UNDEF) { gpio_set(uart_config[uart].tx_pin); gpio_init(uart_config[uart].tx_pin, GPIO_OUT); gpio_init_mux(uart_config[uart].tx_pin, uart_config[uart].mux); } #ifdef MODULE_PERIPH_UART_HW_FC /* If RTS/CTS needed, enable them */ if (uart_config[uart].tx_pad == UART_PAD_TX_0_RTS_2_CTS_3) { /* Ensure RTS is defined */ if (uart_config[uart].rts_pin != GPIO_UNDEF) { gpio_init_mux(uart_config[uart].rts_pin, uart_config[uart].mux); } /* Ensure CTS is defined */ if (uart_config[uart].cts_pin != GPIO_UNDEF) { gpio_init_mux(uart_config[uart].cts_pin, uart_config[uart].mux); } } #endif } int uart_init(uart_t uart, uint32_t baudrate, uart_rx_cb_t rx_cb, void *arg) { if (uart >= UART_NUMOF) { return UART_NODEV; } /* must disable here first to ensure idempotency */ dev(uart)->CTRLA.reg = 0; #ifdef MODULE_PERIPH_UART_NONBLOCKING /* set up the TX buffer */ tsrb_init(&uart_tx_rb[uart], uart_tx_rb_buf[uart], UART_TXBUF_SIZE); #endif /* configure pins */ _configure_pins(uart); /* enable peripheral clock */ sercom_clk_en(dev(uart)); /* reset the UART device */ _reset(dev(uart)); /* configure clock generator */ sercom_set_gen(dev(uart), uart_config[uart].gclk_src); uint32_t f_src = sam0_gclk_freq(uart_config[uart].gclk_src); #if IS_ACTIVE(CONFIG_SAM0_UART_BAUD_FRAC) uint32_t sampr; /* constraint: f_baud ≤ f_src / S */ if (baudrate * 16 > f_src) { /* 8x oversampling */ sampr = SERCOM_USART_CTRLA_SAMPR(0x3); f_src <<= 1; } else { /* 16x oversampling */ sampr = SERCOM_USART_CTRLA_SAMPR(0x1); } #endif /* set asynchronous mode w/o parity, LSB first, TX and RX pad as specified * by the board in the periph_conf.h, x16 sampling and use internal clock */ dev(uart)->CTRLA.reg = SERCOM_USART_CTRLA_DORD #if IS_ACTIVE(CONFIG_SAM0_UART_BAUD_FRAC) /* enable Asynchronous Fractional mode */ | sampr #endif | SERCOM_USART_CTRLA_TXPO(uart_config[uart].tx_pad) | SERCOM_USART_CTRLA_RXPO(uart_config[uart].rx_pad) | SERCOM_USART_CTRLA_MODE(0x1); /* Set run in standby mode if enabled */ if (uart_config[uart].flags & UART_FLAG_RUN_STANDBY) { dev(uart)->CTRLA.reg |= SERCOM_USART_CTRLA_RUNSTDBY; } /* calculate and set baudrate */ _set_baud(uart, baudrate, f_src); /* enable transmitter, and configure 8N1 mode */ if (uart_config[uart].tx_pin != GPIO_UNDEF) { dev(uart)->CTRLB.reg = SERCOM_USART_CTRLB_TXEN; } else { dev(uart)->CTRLB.reg = 0; } /* enable receiver and RX interrupt if configured */ if ((rx_cb) && (uart_config[uart].rx_pin != GPIO_UNDEF)) { uart_ctx[uart].rx_cb = rx_cb; uart_ctx[uart].arg = arg; #ifdef UART_HAS_TX_ISR /* enable RXNE ISR */ NVIC_EnableIRQ(SERCOM0_2_IRQn + (sercom_id(dev(uart)) * 4)); #else /* enable UART ISR */ NVIC_EnableIRQ(SERCOM0_IRQn + sercom_id(dev(uart))); #endif /* UART_HAS_TX_ISR */ dev(uart)->CTRLB.reg |= SERCOM_USART_CTRLB_RXEN; dev(uart)->INTENSET.reg = SERCOM_USART_INTENSET_RXC; /* set wakeup receive from sleep if enabled */ if (uart_config[uart].flags & UART_FLAG_WAKEUP) { dev(uart)->CTRLB.reg |= SERCOM_USART_CTRLB_SFDE; } } #ifdef MODULE_PERIPH_UART_NONBLOCKING #ifndef UART_HAS_TX_ISR else { /* enable UART ISR */ NVIC_EnableIRQ(SERCOM0_IRQn + sercom_id(dev(uart))); } #else /* enable TXE ISR */ NVIC_EnableIRQ(SERCOM0_0_IRQn + (sercom_id(dev(uart)) * 4)); #endif #endif /* MODULE_PERIPH_UART_NONBLOCKING */ _syncbusy(dev(uart)); /* and finally enable the device */ dev(uart)->CTRLA.reg |= SERCOM_USART_CTRLA_ENABLE; return UART_OK; } void uart_init_pins(uart_t uart) { _configure_pins(uart); uart_poweron(uart); } void uart_deinit_pins(uart_t uart) { uart_poweroff(uart); /* de-configure RX pin */ if (uart_config[uart].rx_pin != GPIO_UNDEF) { gpio_disable_mux(uart_config[uart].rx_pin); } /* de-configure TX pin */ if (uart_config[uart].tx_pin != GPIO_UNDEF) { gpio_disable_mux(uart_config[uart].tx_pin); } #ifdef MODULE_PERIPH_UART_HW_FC /* If RTS/CTS needed, enable them */ if (uart_config[uart].tx_pad == UART_PAD_TX_0_RTS_2_CTS_3) { /* Ensure RTS is defined */ if (uart_config[uart].rts_pin != GPIO_UNDEF) { gpio_disable_mux(uart_config[uart].rts_pin); } /* Ensure CTS is defined */ if (uart_config[uart].cts_pin != GPIO_UNDEF) { gpio_disable_mux(uart_config[uart].cts_pin); } } #endif } void uart_write(uart_t uart, const uint8_t *data, size_t len) { if (uart_config[uart].tx_pin == GPIO_UNDEF) { return; } #ifdef MODULE_PERIPH_UART_NONBLOCKING for (const void* end = data + len; data != end; ++data) { if (irq_is_in() || __get_PRIMASK()) { /* if ring buffer is full free up a spot */ if (tsrb_full(&uart_tx_rb[uart])) { while (!dev(uart)->INTFLAG.bit.DRE) {} dev(uart)->DATA.reg = tsrb_get_one(&uart_tx_rb[uart]); } tsrb_add_one(&uart_tx_rb[uart], *data); } else { while (tsrb_add_one(&uart_tx_rb[uart], *data) < 0) {} } dev(uart)->INTENSET.reg = SERCOM_USART_INTENSET_DRE; } #else for (const void* end = data + len; data != end; ++data) { while (!dev(uart)->INTFLAG.bit.DRE) {} dev(uart)->DATA.reg = *data; } while (!dev(uart)->INTFLAG.bit.TXC) {} #endif } void uart_poweron(uart_t uart) { sercom_clk_en(dev(uart)); dev(uart)->CTRLA.reg |= SERCOM_USART_CTRLA_ENABLE; } void uart_poweroff(uart_t uart) { dev(uart)->CTRLA.reg &= ~(SERCOM_USART_CTRLA_ENABLE); sercom_clk_dis(dev(uart)); } #ifdef MODULE_PERIPH_UART_MODECFG int uart_mode(uart_t uart, uart_data_bits_t data_bits, uart_parity_t parity, uart_stop_bits_t stop_bits) { if (uart >= UART_NUMOF) { return UART_NODEV; } if (stop_bits != UART_STOP_BITS_1 && stop_bits != UART_STOP_BITS_2) { return UART_NOMODE; } if (parity != UART_PARITY_NONE && parity != UART_PARITY_EVEN && parity != UART_PARITY_ODD) { return UART_NOMODE; } /* Disable UART first to remove write protect */ dev(uart)->CTRLA.bit.ENABLE = 0; _syncbusy(dev(uart)); dev(uart)->CTRLB.bit.CHSIZE = data_bits; if (parity == UART_PARITY_NONE) { dev(uart)->CTRLA.bit.FORM = 0x0; } else { dev(uart)->CTRLA.bit.FORM = 0x1; dev(uart)->CTRLB.bit.PMODE = (parity == UART_PARITY_ODD) ? 1 : 0; } dev(uart)->CTRLB.bit.SBMODE = (stop_bits == UART_STOP_BITS_1) ? 0 : 1; /* Enable UART again */ dev(uart)->CTRLA.bit.ENABLE = 1; _syncbusy(dev(uart)); return UART_OK; } #endif /* MODULE_PERIPH_UART_MODECFG */ #ifdef MODULE_PERIPH_UART_RXSTART_IRQ void uart_rxstart_irq_configure(uart_t uart, uart_rxstart_cb_t cb, void *arg) { /* CTRLB is enable-proteced */ dev(uart)->CTRLA.bit.ENABLE = 0; /* set start of frame detection enable */ dev(uart)->CTRLB.reg |= SERCOM_USART_CTRLB_SFDE; uart_ctx[uart].rxs_cb = cb; uart_ctx[uart].rxs_arg = arg; /* enable UART again */ dev(uart)->CTRLA.bit.ENABLE = 1; } void uart_rxstart_irq_enable(uart_t uart) { /* clear stale interrupt flag */ dev(uart)->INTFLAG.reg = SERCOM_USART_INTFLAG_RXS; /* enable interrupt */ dev(uart)->INTENSET.reg = SERCOM_USART_INTENSET_RXS; } void uart_rxstart_irq_disable(uart_t uart) { dev(uart)->INTENCLR.reg = SERCOM_USART_INTENCLR_RXS; } #endif /* MODULE_PERIPH_UART_RXSTART_IRQ */ #ifdef MODULE_PERIPH_UART_NONBLOCKING static inline void irq_handler_tx(unsigned uartnum) { /* workaround for saml1x */ int c = tsrb_get_one(&uart_tx_rb[uartnum]); if (c >= 0) { dev(uartnum)->DATA.reg = c; } /* disable the interrupt if there are no more bytes to send */ if (tsrb_empty(&uart_tx_rb[uartnum])) { dev(uartnum)->INTENCLR.reg = SERCOM_USART_INTENSET_DRE; } } #endif static inline void irq_handler(unsigned uartnum) { uint32_t status = dev(uartnum)->INTFLAG.reg; /* TXC is used by uart_write() */ dev(uartnum)->INTFLAG.reg = status & ~SERCOM_USART_INTFLAG_TXC; #if !defined(UART_HAS_TX_ISR) && defined(MODULE_PERIPH_UART_NONBLOCKING) if ((status & SERCOM_USART_INTFLAG_DRE) && dev(uartnum)->INTENSET.bit.DRE) { irq_handler_tx(uartnum); } #endif #ifdef MODULE_PERIPH_UART_RXSTART_IRQ if (status & SERCOM_USART_INTFLAG_RXS && dev(uartnum)->INTENSET.bit.RXS) { uart_ctx[uartnum].rxs_cb(uart_ctx[uartnum].rxs_arg); } #endif if (status & SERCOM_USART_INTFLAG_RXC) { /* interrupt flag is cleared by reading the data register */ uart_ctx[uartnum].rx_cb(uart_ctx[uartnum].arg, (uint8_t)(dev(uartnum)->DATA.reg)); } cortexm_isr_end(); } #ifdef UART_0_ISR void UART_0_ISR(void) { irq_handler(0); } #endif #ifdef UART_1_ISR void UART_1_ISR(void) { irq_handler(1); } #endif #ifdef UART_2_ISR void UART_2_ISR(void) { irq_handler(2); } #endif #ifdef UART_3_ISR void UART_3_ISR(void) { irq_handler(3); } #endif #ifdef UART_4_ISR void UART_4_ISR(void) { irq_handler(4); } #endif #ifdef UART_5_ISR void UART_5_ISR(void) { irq_handler(5); } #endif #ifdef MODULE_PERIPH_UART_NONBLOCKING #ifdef UART_0_ISR_TX void UART_0_ISR_TX(void) { irq_handler_tx(0); } #endif #ifdef UART_1_ISR_TX void UART_1_ISR_TX(void) { irq_handler_tx(1); } #endif #ifdef UART_2_ISR_TX void UART_2_ISR_TX(void) { irq_handler_tx(2); } #endif #ifdef UART_3_ISR_TX void UART_3_ISR_TX(void) { irq_handler_tx(3); } #endif #ifdef UART_4_ISR_TX void UART_4_ISR_TX(void) { irq_handler_tx(4); } #endif #ifdef UART_5_ISR_TX void UART_5_ISR_TX(void) { irq_handler_tx(5); } #endif #endif /* MODULE_PERIPH_UART_NONBLOCKING */