/* * Copyright (C) 2017 Bas Stottelaar * * This file is subject to the terms and conditions of the GNU Lesser General * Public License v2.1. See the file LICENSE in the top level directory for more * details. */ /** * @ingroup cpu_lpc1768 * @{ * * @file * @brief Low-level GPIO driver implementation * * @author Bas Stottelaar * * @} */ #include #include "cpu.h" #include "periph/gpio.h" #ifdef MODULE_PERIPH_GPIO_IRQ /** * @brief Number of external interrupt lines. */ #define NUMOF_IRQS (32) /** * @brief Hold one interrupt context per interrupt line */ static gpio_isr_ctx_t isr_ctx[NUMOF_IRQS]; static gpio_flank_t isr_state[2][32]; #endif /* MODULE_PERIPH_GPIO_IRQ */ #define PIN_MASK (0x1f) #define PORT_SHIFT (5U) static inline int _pin(gpio_t pin) { return (pin & PIN_MASK); } static inline int _port(gpio_t pin) { return (pin >> PORT_SHIFT); } static inline LPC_GPIO_TypeDef *_base(gpio_t pin) { return (LPC_GPIO_TypeDef *) (LPC_GPIO_BASE + (_port(pin) * 0x20)); } int gpio_init(gpio_t pin, gpio_mode_t mode) { /* check for valid pin */ if (pin == GPIO_UNDEF) { return -1; } if (_port(pin) > 4 || _pin(pin) > 32) { return -1; } /* enable gpio peripheral */ LPC_SC->PCONP |= (1 << 15); /* pin as output or input */ LPC_GPIO_TypeDef *base = _base(pin); base->FIODIR &= ~(1 << _pin(pin)); base->FIODIR |= ((mode & 0x01) << _pin(pin)); /* configure pin function */ int reg = 2 * _port(pin) + (_pin(pin) / 16); int bit = (pin % 16) * 2; ((uint32_t *) &LPC_PINCON->PINSEL0)[reg] &= ~(0x03 << bit); /* configure pull up/down */ ((uint32_t *) &LPC_PINCON->PINMODE0)[reg] &= ~(0x03 << bit); ((uint32_t *) &LPC_PINCON->PINMODE0)[reg] |= (((mode >> 1) & 0x03) << bit); /* configure open drain */ ((uint32_t *) &LPC_PINCON->PINMODE_OD0)[_port(pin)] &= ~(1 << _pin(pin)); ((uint32_t *) &LPC_PINCON->PINMODE_OD0)[_port(pin)] |= (((mode >> 3) & 0x01) << _pin(pin)); return 0; } int gpio_read(gpio_t pin) { LPC_GPIO_TypeDef *base = _base(pin); return (base->FIOPIN & (1 << _pin(pin))) ? 1 : 0; } void gpio_set(gpio_t pin) { LPC_GPIO_TypeDef *base = _base(pin); base->FIOSET = (1 << _pin(pin)); } void gpio_clear(gpio_t pin) { LPC_GPIO_TypeDef *base = _base(pin); base->FIOCLR = (1 << _pin(pin)); } void gpio_toggle(gpio_t pin) { LPC_GPIO_TypeDef *base = _base(pin); base->FIOPIN ^= (1 << _pin(pin)); } void gpio_write(gpio_t pin, int value) { LPC_GPIO_TypeDef *base = _base(pin); if (value) { base->FIOSET = (1 << _pin(pin)); } else { base->FIOCLR = (1 << _pin(pin)); } } #ifdef MODULE_PERIPH_GPIO_IRQ static inline void _configure_flank(gpio_t pin, gpio_flank_t flank) { switch (flank) { case GPIO_RISING: if (_port(pin) == 0) { LPC_GPIOINT->IO0IntEnF &= ~(1 << _pin(pin)); LPC_GPIOINT->IO0IntEnR |= (1 << _pin(pin)); } else { LPC_GPIOINT->IO2IntEnF &= ~(1 << _pin(pin)); LPC_GPIOINT->IO2IntEnR |= (1 << _pin(pin)); } break; case GPIO_FALLING: if (_port(pin) == 0) { LPC_GPIOINT->IO0IntEnF |= (1 << _pin(pin)); LPC_GPIOINT->IO0IntEnR &= ~(1 << _pin(pin)); } else { LPC_GPIOINT->IO2IntEnF |= (1 << _pin(pin)); LPC_GPIOINT->IO2IntEnR &= ~(1 << _pin(pin)); } break; case GPIO_BOTH: if (_port(pin) == 0) { LPC_GPIOINT->IO0IntEnF |= 1 << _pin(pin); LPC_GPIOINT->IO0IntEnR |= 1 << _pin(pin); } else { LPC_GPIOINT->IO2IntEnF |= 1 << _pin(pin); LPC_GPIOINT->IO2IntEnR |= 1 << _pin(pin); } break; } } int gpio_init_int(gpio_t pin, gpio_mode_t mode, gpio_flank_t flank, gpio_cb_t cb, void *arg) { /* only certain pins can be used as interrupt pins */ if (_port(pin) != 0 && _port(pin) != 2) { return -1; } /* initialize the pin */ int result = gpio_init(pin, mode); if (result != 0) { return result; } /* store interrupt callback */ isr_ctx[_pin(pin)].cb = cb; isr_ctx[_pin(pin)].arg = arg; /* need to store flank configuration for (re)enable irq */ isr_state[_port(pin) >> 1][_pin(pin)] = flank; /* set flank configuration */ _configure_flank(pin, flank); /* clear any pending requests and enable the interrupt */ NVIC_ClearPendingIRQ(EINT3_IRQn); NVIC_EnableIRQ(EINT3_IRQn); return 0; } void gpio_irq_enable(gpio_t pin) { assert(_port(pin) == 0 || _port(pin) == 2); _configure_flank(pin, isr_state[_port(pin) >> 1][_pin(pin)]); } void gpio_irq_disable(gpio_t pin) { assert(_port(pin) == 0 || _port(pin) == 2); if (_port(pin) == 0) { LPC_GPIOINT->IO0IntEnF &= ~(1 << _pin(pin)); LPC_GPIOINT->IO0IntEnR &= ~(1 << _pin(pin)); } else { LPC_GPIOINT->IO2IntEnF &= ~(1 << _pin(pin)); LPC_GPIOINT->IO2IntEnR &= ~(1 << _pin(pin)); } } void isr_eint3(void) { /* combine all interrupts */ uint32_t status = LPC_GPIOINT->IO0IntStatF | LPC_GPIOINT->IO0IntStatR | LPC_GPIOINT->IO2IntStatF | LPC_GPIOINT->IO2IntStatR; /* invoke all handlers */ for (int i = 0; i < NUMOF_IRQS; i++) { if (status & ((uint32_t)1 << i)) { isr_ctx[i].cb(isr_ctx[i].arg); LPC_GPIOINT->IO0IntClr |= (1 << i); LPC_GPIOINT->IO2IntClr |= (1 << i); } } cortexm_isr_end(); } #endif /* MODULE_PERIPH_GPIO_IRQ */