/****************************************************************************** * Filename: hw_crypto_h * Revised: 2017-01-31 09:37:48 +0100 (Tue, 31 Jan 2017) * Revision: 48345 * * Copyright (c) 2015 - 2017, Texas Instruments Incorporated * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1) Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * 2) Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3) Neither the name of the ORGANIZATION nor the names of its contributors may * be used to endorse or promote products derived from this software without * specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * ******************************************************************************/ #ifndef __HW_CRYPTO_H__ #define __HW_CRYPTO_H__ //***************************************************************************** // // This section defines the register offsets of // CRYPTO component // //***************************************************************************** // DMA Channel 0 Control #define CRYPTO_O_DMACH0CTL 0x00000000 // DMA Channel 0 External Address #define CRYPTO_O_DMACH0EXTADDR 0x00000004 // DMA Channel 0 Length #define CRYPTO_O_DMACH0LEN 0x0000000C // DMA Controller Status #define CRYPTO_O_DMASTAT 0x00000018 // DMA Controller Software Reset #define CRYPTO_O_DMASWRESET 0x0000001C // DMA Channel 1 Control #define CRYPTO_O_DMACH1CTL 0x00000020 // DMA Channel 1 External Address #define CRYPTO_O_DMACH1EXTADDR 0x00000024 // DMA Channel 1 Length #define CRYPTO_O_DMACH1LEN 0x0000002C // DMA Controller Master Configuration #define CRYPTO_O_DMABUSCFG 0x00000078 // DMA Controller Port Error #define CRYPTO_O_DMAPORTERR 0x0000007C // DMA Controller Version #define CRYPTO_O_DMAHWVER 0x000000FC // Key Write Area #define CRYPTO_O_KEYWRITEAREA 0x00000400 // Key Written Area Status #define CRYPTO_O_KEYWRITTENAREA 0x00000404 // Key Size #define CRYPTO_O_KEYSIZE 0x00000408 // Key Read Area #define CRYPTO_O_KEYREADAREA 0x0000040C // Clear AES_KEY2/GHASH Key #define CRYPTO_O_AESKEY20 0x00000500 // Clear AES_KEY2/GHASH Key #define CRYPTO_O_AESKEY21 0x00000504 // Clear AES_KEY2/GHASH Key #define CRYPTO_O_AESKEY22 0x00000508 // Clear AES_KEY2/GHASH Key #define CRYPTO_O_AESKEY23 0x0000050C // Clear AES_KEY3 #define CRYPTO_O_AESKEY30 0x00000510 // Clear AES_KEY3 #define CRYPTO_O_AESKEY31 0x00000514 // Clear AES_KEY3 #define CRYPTO_O_AESKEY32 0x00000518 // Clear AES_KEY3 #define CRYPTO_O_AESKEY33 0x0000051C // AES Initialization Vector #define CRYPTO_O_AESIV0 0x00000540 // AES Initialization Vector #define CRYPTO_O_AESIV1 0x00000544 // AES Initialization Vector #define CRYPTO_O_AESIV2 0x00000548 // AES Initialization Vector #define CRYPTO_O_AESIV3 0x0000054C // AES Input/Output Buffer Control #define CRYPTO_O_AESCTL 0x00000550 // Crypto Data Length LSW #define CRYPTO_O_AESDATALEN0 0x00000554 // Crypto Data Length MSW #define CRYPTO_O_AESDATALEN1 0x00000558 // AES Authentication Length #define CRYPTO_O_AESAUTHLEN 0x0000055C // Data Input/Output #define CRYPTO_O_AESDATAOUT0 0x00000560 // AES Data Input/Output 0 #define CRYPTO_O_AESDATAIN0 0x00000560 // AES Data Input/Output 3 #define CRYPTO_O_AESDATAOUT1 0x00000564 // AES Data Input/Output 1 #define CRYPTO_O_AESDATAIN1 0x00000564 // AES Data Input/Output 2 #define CRYPTO_O_AESDATAOUT2 0x00000568 // AES Data Input/Output 2 #define CRYPTO_O_AESDATAIN2 0x00000568 // AES Data Input/Output 3 #define CRYPTO_O_AESDATAOUT3 0x0000056C // Data Input/Output #define CRYPTO_O_AESDATAIN3 0x0000056C // AES Tag Output #define CRYPTO_O_AESTAGOUT0 0x00000570 // AES Tag Output #define CRYPTO_O_AESTAGOUT1 0x00000574 // AES Tag Output #define CRYPTO_O_AESTAGOUT2 0x00000578 // AES Tag Output #define CRYPTO_O_AESTAGOUT3 0x0000057C // Master Algorithm Select #define CRYPTO_O_ALGSEL 0x00000700 // Master Protection Control #define CRYPTO_O_DMAPROTCTL 0x00000704 // Software Reset #define CRYPTO_O_SWRESET 0x00000740 // Control Interrupt Configuration #define CRYPTO_O_IRQTYPE 0x00000780 // Interrupt Enable #define CRYPTO_O_IRQEN 0x00000784 // Interrupt Clear #define CRYPTO_O_IRQCLR 0x00000788 // Interrupt Set #define CRYPTO_O_IRQSET 0x0000078C // Interrupt Status #define CRYPTO_O_IRQSTAT 0x00000790 // CTRL Module Version #define CRYPTO_O_HWVER 0x000007FC //***************************************************************************** // // Register: CRYPTO_O_DMACH0CTL // //***************************************************************************** // Field: [1] PRIO // // Channel priority: // // A channel with high priority will be served before a channel with low // priority in cases with simultaneous access requests. If both channels have // the same priority access of the channels to the external port is arbitrated // using a Round Robin scheme. // ENUMs: // HIGH Priority high // LOW Priority low #define CRYPTO_DMACH0CTL_PRIO 0x00000002 #define CRYPTO_DMACH0CTL_PRIO_BITN 1 #define CRYPTO_DMACH0CTL_PRIO_M 0x00000002 #define CRYPTO_DMACH0CTL_PRIO_S 1 #define CRYPTO_DMACH0CTL_PRIO_HIGH 0x00000002 #define CRYPTO_DMACH0CTL_PRIO_LOW 0x00000000 // Field: [0] EN // // DMA Channel 0 Control // ENUMs: // EN Channel enabled // DIS Channel disabled #define CRYPTO_DMACH0CTL_EN 0x00000001 #define CRYPTO_DMACH0CTL_EN_BITN 0 #define CRYPTO_DMACH0CTL_EN_M 0x00000001 #define CRYPTO_DMACH0CTL_EN_S 0 #define CRYPTO_DMACH0CTL_EN_EN 0x00000001 #define CRYPTO_DMACH0CTL_EN_DIS 0x00000000 //***************************************************************************** // // Register: CRYPTO_O_DMACH0EXTADDR // //***************************************************************************** // Field: [31:0] ADDR // // Channel external address value. // Holds the last updated external address after being sent to the master // interface. #define CRYPTO_DMACH0EXTADDR_ADDR_W 32 #define CRYPTO_DMACH0EXTADDR_ADDR_M 0xFFFFFFFF #define CRYPTO_DMACH0EXTADDR_ADDR_S 0 //***************************************************************************** // // Register: CRYPTO_O_DMACH0LEN // //***************************************************************************** // Field: [15:0] LEN // // DMA transfer length in bytes. // During configuration, this register contains the DMA transfer length in // bytes. During operation, it contains the last updated value of the DMA // transfer length after being sent to the master interface. // Note: Writing a non-zero value to this register field starts the transfer if // the channel is enabled by setting DMACH0CTL.EN. #define CRYPTO_DMACH0LEN_LEN_W 16 #define CRYPTO_DMACH0LEN_LEN_M 0x0000FFFF #define CRYPTO_DMACH0LEN_LEN_S 0 //***************************************************************************** // // Register: CRYPTO_O_DMASTAT // //***************************************************************************** // Field: [17] PORT_ERR // // Reflects possible transfer errors on the AHB port. #define CRYPTO_DMASTAT_PORT_ERR 0x00020000 #define CRYPTO_DMASTAT_PORT_ERR_BITN 17 #define CRYPTO_DMASTAT_PORT_ERR_M 0x00020000 #define CRYPTO_DMASTAT_PORT_ERR_S 17 // Field: [1] CH1_ACTIVE // // This register field indicates if DMA channel 1 is active or not. // 0: Not active // 1: Active #define CRYPTO_DMASTAT_CH1_ACTIVE 0x00000002 #define CRYPTO_DMASTAT_CH1_ACTIVE_BITN 1 #define CRYPTO_DMASTAT_CH1_ACTIVE_M 0x00000002 #define CRYPTO_DMASTAT_CH1_ACTIVE_S 1 // Field: [0] CH0_ACTIVE // // This register field indicates if DMA channel 0 is active or not. // 0: Not active // 1: Active #define CRYPTO_DMASTAT_CH0_ACTIVE 0x00000001 #define CRYPTO_DMASTAT_CH0_ACTIVE_BITN 0 #define CRYPTO_DMASTAT_CH0_ACTIVE_M 0x00000001 #define CRYPTO_DMASTAT_CH0_ACTIVE_S 0 //***************************************************************************** // // Register: CRYPTO_O_DMASWRESET // //***************************************************************************** // Field: [0] RESET // // Software reset enable // // 0: Disable // 1: Enable (self-cleared to zero). // // Note: Completion of the software reset must be checked in DMASTAT.CH0_ACTIVE // and DMASTAT.CH1_ACTIVE. #define CRYPTO_DMASWRESET_RESET 0x00000001 #define CRYPTO_DMASWRESET_RESET_BITN 0 #define CRYPTO_DMASWRESET_RESET_M 0x00000001 #define CRYPTO_DMASWRESET_RESET_S 0 //***************************************************************************** // // Register: CRYPTO_O_DMACH1CTL // //***************************************************************************** // Field: [1] PRIO // // Channel priority: // // A channel with high priority will be served before a channel with low // priority in cases with simultaneous access requests. If both channels have // the same priority access of the channels to the external port is arbitrated // using a Round Robin scheme. // ENUMs: // HIGH Priority high // LOW Priority low #define CRYPTO_DMACH1CTL_PRIO 0x00000002 #define CRYPTO_DMACH1CTL_PRIO_BITN 1 #define CRYPTO_DMACH1CTL_PRIO_M 0x00000002 #define CRYPTO_DMACH1CTL_PRIO_S 1 #define CRYPTO_DMACH1CTL_PRIO_HIGH 0x00000002 #define CRYPTO_DMACH1CTL_PRIO_LOW 0x00000000 // Field: [0] EN // // Channel enable: // // Note: Disabling an active channel will interrupt the DMA operation. The // ongoing block transfer will be completed, but no new transfers will be // requested. // ENUMs: // EN Channel enabled // DIS Channel disabled #define CRYPTO_DMACH1CTL_EN 0x00000001 #define CRYPTO_DMACH1CTL_EN_BITN 0 #define CRYPTO_DMACH1CTL_EN_M 0x00000001 #define CRYPTO_DMACH1CTL_EN_S 0 #define CRYPTO_DMACH1CTL_EN_EN 0x00000001 #define CRYPTO_DMACH1CTL_EN_DIS 0x00000000 //***************************************************************************** // // Register: CRYPTO_O_DMACH1EXTADDR // //***************************************************************************** // Field: [31:0] ADDR // // Channel external address value. // Holds the last updated external address after being sent to the master // interface. #define CRYPTO_DMACH1EXTADDR_ADDR_W 32 #define CRYPTO_DMACH1EXTADDR_ADDR_M 0xFFFFFFFF #define CRYPTO_DMACH1EXTADDR_ADDR_S 0 //***************************************************************************** // // Register: CRYPTO_O_DMACH1LEN // //***************************************************************************** // Field: [15:0] LEN // // DMA transfer length in bytes. // During configuration, this register contains the DMA transfer length in // bytes. During operation, it contains the last updated value of the DMA // transfer length after being sent to the master interface. // Note: Writing a non-zero value to this register field starts the transfer if // the channel is enabled by setting DMACH1CTL.EN. #define CRYPTO_DMACH1LEN_LEN_W 16 #define CRYPTO_DMACH1LEN_LEN_M 0x0000FFFF #define CRYPTO_DMACH1LEN_LEN_S 0 //***************************************************************************** // // Register: CRYPTO_O_DMABUSCFG // //***************************************************************************** // Field: [15:12] AHB_MST1_BURST_SIZE // // Maximum burst size that can be performed on the AHB bus // ENUMs: // 64_BYTE 64 bytes // 32_BYTE 32 bytes // 16_BYTE 16 bytes // 8_BYTE 8 bytes // 4_BYTE 4 bytes #define CRYPTO_DMABUSCFG_AHB_MST1_BURST_SIZE_W 4 #define CRYPTO_DMABUSCFG_AHB_MST1_BURST_SIZE_M 0x0000F000 #define CRYPTO_DMABUSCFG_AHB_MST1_BURST_SIZE_S 12 #define CRYPTO_DMABUSCFG_AHB_MST1_BURST_SIZE_64_BYTE 0x00006000 #define CRYPTO_DMABUSCFG_AHB_MST1_BURST_SIZE_32_BYTE 0x00005000 #define CRYPTO_DMABUSCFG_AHB_MST1_BURST_SIZE_16_BYTE 0x00004000 #define CRYPTO_DMABUSCFG_AHB_MST1_BURST_SIZE_8_BYTE 0x00003000 #define CRYPTO_DMABUSCFG_AHB_MST1_BURST_SIZE_4_BYTE 0x00002000 // Field: [11] AHB_MST1_IDLE_EN // // Idle transfer insertion between consecutive burst transfers on AHB // ENUMs: // IDLE Idle transfer insertion enabled // NO_IDLE Do not insert idle transfers. #define CRYPTO_DMABUSCFG_AHB_MST1_IDLE_EN 0x00000800 #define CRYPTO_DMABUSCFG_AHB_MST1_IDLE_EN_BITN 11 #define CRYPTO_DMABUSCFG_AHB_MST1_IDLE_EN_M 0x00000800 #define CRYPTO_DMABUSCFG_AHB_MST1_IDLE_EN_S 11 #define CRYPTO_DMABUSCFG_AHB_MST1_IDLE_EN_IDLE 0x00000800 #define CRYPTO_DMABUSCFG_AHB_MST1_IDLE_EN_NO_IDLE 0x00000000 // Field: [10] AHB_MST1_INCR_EN // // Burst length type of AHB transfer // ENUMs: // SPECIFIED Fixed length bursts or single transfers // UNSPECIFIED Unspecified length burst transfers #define CRYPTO_DMABUSCFG_AHB_MST1_INCR_EN 0x00000400 #define CRYPTO_DMABUSCFG_AHB_MST1_INCR_EN_BITN 10 #define CRYPTO_DMABUSCFG_AHB_MST1_INCR_EN_M 0x00000400 #define CRYPTO_DMABUSCFG_AHB_MST1_INCR_EN_S 10 #define CRYPTO_DMABUSCFG_AHB_MST1_INCR_EN_SPECIFIED 0x00000400 #define CRYPTO_DMABUSCFG_AHB_MST1_INCR_EN_UNSPECIFIED 0x00000000 // Field: [9] AHB_MST1_LOCK_EN // // Locked transform on AHB // ENUMs: // LOCKED Transfers are locked // NOT_LOCKED Transfers are not locked #define CRYPTO_DMABUSCFG_AHB_MST1_LOCK_EN 0x00000200 #define CRYPTO_DMABUSCFG_AHB_MST1_LOCK_EN_BITN 9 #define CRYPTO_DMABUSCFG_AHB_MST1_LOCK_EN_M 0x00000200 #define CRYPTO_DMABUSCFG_AHB_MST1_LOCK_EN_S 9 #define CRYPTO_DMABUSCFG_AHB_MST1_LOCK_EN_LOCKED 0x00000200 #define CRYPTO_DMABUSCFG_AHB_MST1_LOCK_EN_NOT_LOCKED 0x00000000 // Field: [8] AHB_MST1_BIGEND // // Endianess for the AHB master // ENUMs: // BIG_ENDIAN Big Endian // LITTLE_ENDIAN Little Endian #define CRYPTO_DMABUSCFG_AHB_MST1_BIGEND 0x00000100 #define CRYPTO_DMABUSCFG_AHB_MST1_BIGEND_BITN 8 #define CRYPTO_DMABUSCFG_AHB_MST1_BIGEND_M 0x00000100 #define CRYPTO_DMABUSCFG_AHB_MST1_BIGEND_S 8 #define CRYPTO_DMABUSCFG_AHB_MST1_BIGEND_BIG_ENDIAN 0x00000100 #define CRYPTO_DMABUSCFG_AHB_MST1_BIGEND_LITTLE_ENDIAN 0x00000000 //***************************************************************************** // // Register: CRYPTO_O_DMAPORTERR // //***************************************************************************** // Field: [12] AHB_ERR // // A 1 indicates that the Crypto peripheral has detected an AHB bus error #define CRYPTO_DMAPORTERR_AHB_ERR 0x00001000 #define CRYPTO_DMAPORTERR_AHB_ERR_BITN 12 #define CRYPTO_DMAPORTERR_AHB_ERR_M 0x00001000 #define CRYPTO_DMAPORTERR_AHB_ERR_S 12 // Field: [9] LAST_CH // // Indicates which channel was serviced last (channel 0 or channel 1) by the // AHB master port. #define CRYPTO_DMAPORTERR_LAST_CH 0x00000200 #define CRYPTO_DMAPORTERR_LAST_CH_BITN 9 #define CRYPTO_DMAPORTERR_LAST_CH_M 0x00000200 #define CRYPTO_DMAPORTERR_LAST_CH_S 9 //***************************************************************************** // // Register: CRYPTO_O_DMAHWVER // //***************************************************************************** // Field: [27:24] HW_MAJOR_VER // // Major version number #define CRYPTO_DMAHWVER_HW_MAJOR_VER_W 4 #define CRYPTO_DMAHWVER_HW_MAJOR_VER_M 0x0F000000 #define CRYPTO_DMAHWVER_HW_MAJOR_VER_S 24 // Field: [23:20] HW_MINOR_VER // // Minor version number #define CRYPTO_DMAHWVER_HW_MINOR_VER_W 4 #define CRYPTO_DMAHWVER_HW_MINOR_VER_M 0x00F00000 #define CRYPTO_DMAHWVER_HW_MINOR_VER_S 20 // Field: [19:16] HW_PATCH_LVL // // Patch level. #define CRYPTO_DMAHWVER_HW_PATCH_LVL_W 4 #define CRYPTO_DMAHWVER_HW_PATCH_LVL_M 0x000F0000 #define CRYPTO_DMAHWVER_HW_PATCH_LVL_S 16 // Field: [15:8] VER_NUM_COMPL // // Bit-by-bit complement of the VER_NUM field bits. #define CRYPTO_DMAHWVER_VER_NUM_COMPL_W 8 #define CRYPTO_DMAHWVER_VER_NUM_COMPL_M 0x0000FF00 #define CRYPTO_DMAHWVER_VER_NUM_COMPL_S 8 // Field: [7:0] VER_NUM // // Version number of the DMA Controller (209) #define CRYPTO_DMAHWVER_VER_NUM_W 8 #define CRYPTO_DMAHWVER_VER_NUM_M 0x000000FF #define CRYPTO_DMAHWVER_VER_NUM_S 0 //***************************************************************************** // // Register: CRYPTO_O_KEYWRITEAREA // //***************************************************************************** // Field: [7] RAM_AREA7 // // Represents an area of 128 bits. // Select the key store RAM area(s) where the key(s) needs to be written. // // Writing to multiple RAM locations is only possible when the selected RAM // areas are sequential. // ENUMs: // SEL This RAM area is selected to be written // NOT_SEL This RAM area is not selected to be written #define CRYPTO_KEYWRITEAREA_RAM_AREA7 0x00000080 #define CRYPTO_KEYWRITEAREA_RAM_AREA7_BITN 7 #define CRYPTO_KEYWRITEAREA_RAM_AREA7_M 0x00000080 #define CRYPTO_KEYWRITEAREA_RAM_AREA7_S 7 #define CRYPTO_KEYWRITEAREA_RAM_AREA7_SEL 0x00000080 #define CRYPTO_KEYWRITEAREA_RAM_AREA7_NOT_SEL 0x00000000 // Field: [6] RAM_AREA6 // // Represents an area of 128 bits. // Select the key store RAM area(s) where the key(s) needs to be written. // // Writing to multiple RAM locations is only possible when the selected RAM // areas are sequential. // ENUMs: // SEL This RAM area is selected to be written // NOT_SEL This RAM area is not selected to be written #define CRYPTO_KEYWRITEAREA_RAM_AREA6 0x00000040 #define CRYPTO_KEYWRITEAREA_RAM_AREA6_BITN 6 #define CRYPTO_KEYWRITEAREA_RAM_AREA6_M 0x00000040 #define CRYPTO_KEYWRITEAREA_RAM_AREA6_S 6 #define CRYPTO_KEYWRITEAREA_RAM_AREA6_SEL 0x00000040 #define CRYPTO_KEYWRITEAREA_RAM_AREA6_NOT_SEL 0x00000000 // Field: [5] RAM_AREA5 // // Represents an area of 128 bits. // Select the key store RAM area(s) where the key(s) needs to be written. // // Writing to multiple RAM locations is only possible when the selected RAM // areas are sequential. // ENUMs: // SEL This RAM area is selected to be written // NOT_SEL This RAM area is not selected to be written #define CRYPTO_KEYWRITEAREA_RAM_AREA5 0x00000020 #define CRYPTO_KEYWRITEAREA_RAM_AREA5_BITN 5 #define CRYPTO_KEYWRITEAREA_RAM_AREA5_M 0x00000020 #define CRYPTO_KEYWRITEAREA_RAM_AREA5_S 5 #define CRYPTO_KEYWRITEAREA_RAM_AREA5_SEL 0x00000020 #define CRYPTO_KEYWRITEAREA_RAM_AREA5_NOT_SEL 0x00000000 // Field: [4] RAM_AREA4 // // Represents an area of 128 bits. // Select the key store RAM area(s) where the key(s) needs to be written. // // Writing to multiple RAM locations is only possible when the selected RAM // areas are sequential. // ENUMs: // SEL This RAM area is selected to be written // NOT_SEL This RAM area is not selected to be written #define CRYPTO_KEYWRITEAREA_RAM_AREA4 0x00000010 #define CRYPTO_KEYWRITEAREA_RAM_AREA4_BITN 4 #define CRYPTO_KEYWRITEAREA_RAM_AREA4_M 0x00000010 #define CRYPTO_KEYWRITEAREA_RAM_AREA4_S 4 #define CRYPTO_KEYWRITEAREA_RAM_AREA4_SEL 0x00000010 #define CRYPTO_KEYWRITEAREA_RAM_AREA4_NOT_SEL 0x00000000 // Field: [3] RAM_AREA3 // // Represents an area of 128 bits. // Select the key store RAM area(s) where the key(s) needs to be written. // // Writing to multiple RAM locations is only possible when the selected RAM // areas are sequential. // ENUMs: // SEL This RAM area is selected to be written // NOT_SEL This RAM area is not selected to be written #define CRYPTO_KEYWRITEAREA_RAM_AREA3 0x00000008 #define CRYPTO_KEYWRITEAREA_RAM_AREA3_BITN 3 #define CRYPTO_KEYWRITEAREA_RAM_AREA3_M 0x00000008 #define CRYPTO_KEYWRITEAREA_RAM_AREA3_S 3 #define CRYPTO_KEYWRITEAREA_RAM_AREA3_SEL 0x00000008 #define CRYPTO_KEYWRITEAREA_RAM_AREA3_NOT_SEL 0x00000000 // Field: [2] RAM_AREA2 // // Represents an area of 128 bits. // Select the key store RAM area(s) where the key(s) needs to be written. // // Writing to multiple RAM locations is only possible when the selected RAM // areas are sequential. // ENUMs: // SEL This RAM area is selected to be written // NOT_SEL This RAM area is not selected to be written #define CRYPTO_KEYWRITEAREA_RAM_AREA2 0x00000004 #define CRYPTO_KEYWRITEAREA_RAM_AREA2_BITN 2 #define CRYPTO_KEYWRITEAREA_RAM_AREA2_M 0x00000004 #define CRYPTO_KEYWRITEAREA_RAM_AREA2_S 2 #define CRYPTO_KEYWRITEAREA_RAM_AREA2_SEL 0x00000004 #define CRYPTO_KEYWRITEAREA_RAM_AREA2_NOT_SEL 0x00000000 // Field: [1] RAM_AREA1 // // Represents an area of 128 bits. // Select the key store RAM area(s) where the key(s) needs to be written. // // Writing to multiple RAM locations is only possible when the selected RAM // areas are sequential. // ENUMs: // SEL This RAM area is selected to be written // NOT_SEL This RAM area is not selected to be written #define CRYPTO_KEYWRITEAREA_RAM_AREA1 0x00000002 #define CRYPTO_KEYWRITEAREA_RAM_AREA1_BITN 1 #define CRYPTO_KEYWRITEAREA_RAM_AREA1_M 0x00000002 #define CRYPTO_KEYWRITEAREA_RAM_AREA1_S 1 #define CRYPTO_KEYWRITEAREA_RAM_AREA1_SEL 0x00000002 #define CRYPTO_KEYWRITEAREA_RAM_AREA1_NOT_SEL 0x00000000 // Field: [0] RAM_AREA0 // // Represents an area of 128 bits. // Select the key store RAM area(s) where the key(s) needs to be written. // // Writing to multiple RAM locations is only possible when the selected RAM // areas are sequential. // ENUMs: // SEL This RAM area is selected to be written // NOT_SEL This RAM area is not selected to be written #define CRYPTO_KEYWRITEAREA_RAM_AREA0 0x00000001 #define CRYPTO_KEYWRITEAREA_RAM_AREA0_BITN 0 #define CRYPTO_KEYWRITEAREA_RAM_AREA0_M 0x00000001 #define CRYPTO_KEYWRITEAREA_RAM_AREA0_S 0 #define CRYPTO_KEYWRITEAREA_RAM_AREA0_SEL 0x00000001 #define CRYPTO_KEYWRITEAREA_RAM_AREA0_NOT_SEL 0x00000000 //***************************************************************************** // // Register: CRYPTO_O_KEYWRITTENAREA // //***************************************************************************** // Field: [7] RAM_AREA_WRITTEN7 // // On read this bit returns the key area written status. // // This bit can be reset by writing a 1. // // Note: This register will be reset on a soft reset initiated by writing to // DMASWRESET.RESET. After a soft reset, all keys must be rewritten to the key // store memory. // ENUMs: // WRITTEN This RAM area is written with valid key // information // NOT_WRITTEN This RAM area is not written with valid key // information #define CRYPTO_KEYWRITTENAREA_RAM_AREA_WRITTEN7 0x00000080 #define CRYPTO_KEYWRITTENAREA_RAM_AREA_WRITTEN7_BITN 7 #define CRYPTO_KEYWRITTENAREA_RAM_AREA_WRITTEN7_M 0x00000080 #define CRYPTO_KEYWRITTENAREA_RAM_AREA_WRITTEN7_S 7 #define CRYPTO_KEYWRITTENAREA_RAM_AREA_WRITTEN7_WRITTEN 0x00000080 #define CRYPTO_KEYWRITTENAREA_RAM_AREA_WRITTEN7_NOT_WRITTEN 0x00000000 // Field: [6] RAM_AREA_WRITTEN6 // // On read this bit returns the key area written status. // // This bit can be reset by writing a 1. // // Note: This register will be reset on a soft reset initiated by writing to // DMASWRESET.RESET. After a soft reset, all keys must be rewritten to the key // store memory. // ENUMs: // WRITTEN This RAM area is written with valid key // information // NOT_WRITTEN This RAM area is not written with valid key // information #define CRYPTO_KEYWRITTENAREA_RAM_AREA_WRITTEN6 0x00000040 #define CRYPTO_KEYWRITTENAREA_RAM_AREA_WRITTEN6_BITN 6 #define CRYPTO_KEYWRITTENAREA_RAM_AREA_WRITTEN6_M 0x00000040 #define CRYPTO_KEYWRITTENAREA_RAM_AREA_WRITTEN6_S 6 #define CRYPTO_KEYWRITTENAREA_RAM_AREA_WRITTEN6_WRITTEN 0x00000040 #define CRYPTO_KEYWRITTENAREA_RAM_AREA_WRITTEN6_NOT_WRITTEN 0x00000000 // Field: [5] RAM_AREA_WRITTEN5 // // On read this bit returns the key area written status. // // This bit can be reset by writing a 1. // // Note: This register will be reset on a soft reset initiated by writing to // DMASWRESET.RESET. After a soft reset, all keys must be rewritten to the key // store memory. // ENUMs: // WRITTEN This RAM area is written with valid key // information // NOT_WRITTEN This RAM area is not written with valid key // information #define CRYPTO_KEYWRITTENAREA_RAM_AREA_WRITTEN5 0x00000020 #define CRYPTO_KEYWRITTENAREA_RAM_AREA_WRITTEN5_BITN 5 #define CRYPTO_KEYWRITTENAREA_RAM_AREA_WRITTEN5_M 0x00000020 #define CRYPTO_KEYWRITTENAREA_RAM_AREA_WRITTEN5_S 5 #define CRYPTO_KEYWRITTENAREA_RAM_AREA_WRITTEN5_WRITTEN 0x00000020 #define CRYPTO_KEYWRITTENAREA_RAM_AREA_WRITTEN5_NOT_WRITTEN 0x00000000 // Field: [4] RAM_AREA_WRITTEN4 // // On read this bit returns the key area written status. // // This bit can be reset by writing a 1. // // Note: This register will be reset on a soft reset initiated by writing to // DMASWRESET.RESET. After a soft reset, all keys must be rewritten to the key // store memory. // ENUMs: // WRITTEN This RAM area is written with valid key // information // NOT_WRITTEN This RAM area is not written with valid key // information #define CRYPTO_KEYWRITTENAREA_RAM_AREA_WRITTEN4 0x00000010 #define CRYPTO_KEYWRITTENAREA_RAM_AREA_WRITTEN4_BITN 4 #define CRYPTO_KEYWRITTENAREA_RAM_AREA_WRITTEN4_M 0x00000010 #define CRYPTO_KEYWRITTENAREA_RAM_AREA_WRITTEN4_S 4 #define CRYPTO_KEYWRITTENAREA_RAM_AREA_WRITTEN4_WRITTEN 0x00000010 #define CRYPTO_KEYWRITTENAREA_RAM_AREA_WRITTEN4_NOT_WRITTEN 0x00000000 // Field: [3] RAM_AREA_WRITTEN3 // // On read this bit returns the key area written status. // // This bit can be reset by writing a 1. // // Note: This register will be reset on a soft reset initiated by writing to // DMASWRESET.RESET. After a soft reset, all keys must be rewritten to the key // store memory. // ENUMs: // WRITTEN This RAM area is written with valid key // information // NOT_WRITTEN This RAM area is not written with valid key // information #define CRYPTO_KEYWRITTENAREA_RAM_AREA_WRITTEN3 0x00000008 #define CRYPTO_KEYWRITTENAREA_RAM_AREA_WRITTEN3_BITN 3 #define CRYPTO_KEYWRITTENAREA_RAM_AREA_WRITTEN3_M 0x00000008 #define CRYPTO_KEYWRITTENAREA_RAM_AREA_WRITTEN3_S 3 #define CRYPTO_KEYWRITTENAREA_RAM_AREA_WRITTEN3_WRITTEN 0x00000008 #define CRYPTO_KEYWRITTENAREA_RAM_AREA_WRITTEN3_NOT_WRITTEN 0x00000000 // Field: [2] RAM_AREA_WRITTEN2 // // On read this bit returns the key area written status. // // This bit can be reset by writing a 1. // // Note: This register will be reset on a soft reset initiated by writing to // DMASWRESET.RESET. After a soft reset, all keys must be rewritten to the key // store memory. // ENUMs: // WRITTEN This RAM area is written with valid key // information // NOT_WRITTEN This RAM area is not written with valid key // information #define CRYPTO_KEYWRITTENAREA_RAM_AREA_WRITTEN2 0x00000004 #define CRYPTO_KEYWRITTENAREA_RAM_AREA_WRITTEN2_BITN 2 #define CRYPTO_KEYWRITTENAREA_RAM_AREA_WRITTEN2_M 0x00000004 #define CRYPTO_KEYWRITTENAREA_RAM_AREA_WRITTEN2_S 2 #define CRYPTO_KEYWRITTENAREA_RAM_AREA_WRITTEN2_WRITTEN 0x00000004 #define CRYPTO_KEYWRITTENAREA_RAM_AREA_WRITTEN2_NOT_WRITTEN 0x00000000 // Field: [1] RAM_AREA_WRITTEN1 // // On read this bit returns the key area written status. // // This bit can be reset by writing a 1. // // Note: This register will be reset on a soft reset initiated by writing to // DMASWRESET.RESET. After a soft reset, all keys must be rewritten to the key // store memory. // ENUMs: // WRITTEN This RAM area is written with valid key // information // NOT_WRITTEN This RAM area is not written with valid key // information #define CRYPTO_KEYWRITTENAREA_RAM_AREA_WRITTEN1 0x00000002 #define CRYPTO_KEYWRITTENAREA_RAM_AREA_WRITTEN1_BITN 1 #define CRYPTO_KEYWRITTENAREA_RAM_AREA_WRITTEN1_M 0x00000002 #define CRYPTO_KEYWRITTENAREA_RAM_AREA_WRITTEN1_S 1 #define CRYPTO_KEYWRITTENAREA_RAM_AREA_WRITTEN1_WRITTEN 0x00000002 #define CRYPTO_KEYWRITTENAREA_RAM_AREA_WRITTEN1_NOT_WRITTEN 0x00000000 // Field: [0] RAM_AREA_WRITTEN0 // // On read this bit returns the key area written status. // // // This bit can be reset by writing a 1. // // Note: This register will be reset on a soft reset initiated by writing to // DMASWRESET.RESET. After a soft reset, all keys must be rewritten to the key // store memory. // ENUMs: // WRITTEN This RAM area is written with valid key // information // NOT_WRITTEN This RAM area is not written with valid key // information #define CRYPTO_KEYWRITTENAREA_RAM_AREA_WRITTEN0 0x00000001 #define CRYPTO_KEYWRITTENAREA_RAM_AREA_WRITTEN0_BITN 0 #define CRYPTO_KEYWRITTENAREA_RAM_AREA_WRITTEN0_M 0x00000001 #define CRYPTO_KEYWRITTENAREA_RAM_AREA_WRITTEN0_S 0 #define CRYPTO_KEYWRITTENAREA_RAM_AREA_WRITTEN0_WRITTEN 0x00000001 #define CRYPTO_KEYWRITTENAREA_RAM_AREA_WRITTEN0_NOT_WRITTEN 0x00000000 //***************************************************************************** // // Register: CRYPTO_O_KEYSIZE // //***************************************************************************** // Field: [1:0] SIZE // // Key size // // When writing to this register, KEYWRITTENAREA will be reset. // // Note: For the Crypto peripheral this field is fixed to 128 bits. For // software compatibility KEYWRITTENAREA will be reset when writing to this // register. // ENUMs: // 256_BIT Not supported // 192_BIT Not supported // 128_BIT 128 bits #define CRYPTO_KEYSIZE_SIZE_W 2 #define CRYPTO_KEYSIZE_SIZE_M 0x00000003 #define CRYPTO_KEYSIZE_SIZE_S 0 #define CRYPTO_KEYSIZE_SIZE_256_BIT 0x00000003 #define CRYPTO_KEYSIZE_SIZE_192_BIT 0x00000002 #define CRYPTO_KEYSIZE_SIZE_128_BIT 0x00000001 //***************************************************************************** // // Register: CRYPTO_O_KEYREADAREA // //***************************************************************************** // Field: [31] BUSY // // Key store operation busy status flag (read only) // // 0: operation is completed. // 1: operation is not completed and the key store is busy. #define CRYPTO_KEYREADAREA_BUSY 0x80000000 #define CRYPTO_KEYREADAREA_BUSY_BITN 31 #define CRYPTO_KEYREADAREA_BUSY_M 0x80000000 #define CRYPTO_KEYREADAREA_BUSY_S 31 // Field: [3:0] RAM_AREA // // Selects the area of the key store RAM from where the key needs to be read // that will be written to the AES engine. // // Only RAM areas that contain valid written keys can be selected. // ENUMs: // NO_RAM No RAM // RAM_AREA7 RAM Area 7 // RAM_AREA6 RAM Area 6 // RAM_AREA5 RAM Area 5 // RAM_AREA4 RAM Area 4 // RAM_AREA3 RAM Area 3 // RAM_AREA2 RAM Area 2 // RAM_AREA1 RAM Area 1 // RAM_AREA0 RAM Area 0 #define CRYPTO_KEYREADAREA_RAM_AREA_W 4 #define CRYPTO_KEYREADAREA_RAM_AREA_M 0x0000000F #define CRYPTO_KEYREADAREA_RAM_AREA_S 0 #define CRYPTO_KEYREADAREA_RAM_AREA_NO_RAM 0x00000008 #define CRYPTO_KEYREADAREA_RAM_AREA_RAM_AREA7 0x00000007 #define CRYPTO_KEYREADAREA_RAM_AREA_RAM_AREA6 0x00000006 #define CRYPTO_KEYREADAREA_RAM_AREA_RAM_AREA5 0x00000005 #define CRYPTO_KEYREADAREA_RAM_AREA_RAM_AREA4 0x00000004 #define CRYPTO_KEYREADAREA_RAM_AREA_RAM_AREA3 0x00000003 #define CRYPTO_KEYREADAREA_RAM_AREA_RAM_AREA2 0x00000002 #define CRYPTO_KEYREADAREA_RAM_AREA_RAM_AREA1 0x00000001 #define CRYPTO_KEYREADAREA_RAM_AREA_RAM_AREA0 0x00000000 //***************************************************************************** // // Register: CRYPTO_O_AESKEY20 // //***************************************************************************** // Field: [31:0] KEY2 // // AESKEY2.* bits 31+x:0+x or AES_GHASH_H.* bits 31+x:0+x, where x = 0, 32, 64, // 96 ordered from the LSW entry of this 4-deep register array. // The interpretation of this field depends on the crypto operation mode. #define CRYPTO_AESKEY20_KEY2_W 32 #define CRYPTO_AESKEY20_KEY2_M 0xFFFFFFFF #define CRYPTO_AESKEY20_KEY2_S 0 //***************************************************************************** // // Register: CRYPTO_O_AESKEY21 // //***************************************************************************** // Field: [31:0] KEY2 // // AESKEY2.* bits 31+x:0+x or AES_GHASH_H.* bits 31+x:0+x, where x = 0, 32, 64, // 96 ordered from the LSW entry of this 4-deep register array. // The interpretation of this field depends on the crypto operation mode. #define CRYPTO_AESKEY21_KEY2_W 32 #define CRYPTO_AESKEY21_KEY2_M 0xFFFFFFFF #define CRYPTO_AESKEY21_KEY2_S 0 //***************************************************************************** // // Register: CRYPTO_O_AESKEY22 // //***************************************************************************** // Field: [31:0] KEY2 // // AESKEY2.* bits 31+x:0+x or AES_GHASH_H.* bits 31+x:0+x, where x = 0, 32, 64, // 96 ordered from the LSW entry of this 4-deep register array. // The interpretation of this field depends on the crypto operation mode. #define CRYPTO_AESKEY22_KEY2_W 32 #define CRYPTO_AESKEY22_KEY2_M 0xFFFFFFFF #define CRYPTO_AESKEY22_KEY2_S 0 //***************************************************************************** // // Register: CRYPTO_O_AESKEY23 // //***************************************************************************** // Field: [31:0] KEY2 // // AESKEY2.* bits 31+x:0+x or AES_GHASH_H.* bits 31+x:0+x, where x = 0, 32, 64, // 96 ordered from the LSW entry of this 4-deep register array. // The interpretation of this field depends on the crypto operation mode. #define CRYPTO_AESKEY23_KEY2_W 32 #define CRYPTO_AESKEY23_KEY2_M 0xFFFFFFFF #define CRYPTO_AESKEY23_KEY2_S 0 //***************************************************************************** // // Register: CRYPTO_O_AESKEY30 // //***************************************************************************** // Field: [31:0] KEY3 // // AESKEY3.* bits 31+x:0+x or AESKEY2.* bits 159+x:128+x, where x = 0, 32, 64, // 96 ordered from the LSW entry of this 4-deep register arrary. // The interpretation of this field depends on the crypto operation mode. #define CRYPTO_AESKEY30_KEY3_W 32 #define CRYPTO_AESKEY30_KEY3_M 0xFFFFFFFF #define CRYPTO_AESKEY30_KEY3_S 0 //***************************************************************************** // // Register: CRYPTO_O_AESKEY31 // //***************************************************************************** // Field: [31:0] KEY3 // // AESKEY3.* bits 31+x:0+x or AESKEY2.* bits 159+x:128+x, where x = 0, 32, 64, // 96 ordered from the LSW entry of this 4-deep register arrary. // The interpretation of this field depends on the crypto operation mode. #define CRYPTO_AESKEY31_KEY3_W 32 #define CRYPTO_AESKEY31_KEY3_M 0xFFFFFFFF #define CRYPTO_AESKEY31_KEY3_S 0 //***************************************************************************** // // Register: CRYPTO_O_AESKEY32 // //***************************************************************************** // Field: [31:0] KEY3 // // AESKEY3.* bits 31+x:0+x or AESKEY2.* bits 159+x:128+x, where x = 0, 32, 64, // 96 ordered from the LSW entry of this 4-deep register arrary. // The interpretation of this field depends on the crypto operation mode. #define CRYPTO_AESKEY32_KEY3_W 32 #define CRYPTO_AESKEY32_KEY3_M 0xFFFFFFFF #define CRYPTO_AESKEY32_KEY3_S 0 //***************************************************************************** // // Register: CRYPTO_O_AESKEY33 // //***************************************************************************** // Field: [31:0] KEY3 // // AESKEY3.* bits 31+x:0+x or AESKEY2.* bits 159+x:128+x, where x = 0, 32, 64, // 96 ordered from the LSW entry of this 4-deep register arrary. // The interpretation of this field depends on the crypto operation mode. #define CRYPTO_AESKEY33_KEY3_W 32 #define CRYPTO_AESKEY33_KEY3_M 0xFFFFFFFF #define CRYPTO_AESKEY33_KEY3_S 0 //***************************************************************************** // // Register: CRYPTO_O_AESIV0 // //***************************************************************************** // Field: [31:0] IV // // The interpretation of this field depends on the crypto operation mode. #define CRYPTO_AESIV0_IV_W 32 #define CRYPTO_AESIV0_IV_M 0xFFFFFFFF #define CRYPTO_AESIV0_IV_S 0 //***************************************************************************** // // Register: CRYPTO_O_AESIV1 // //***************************************************************************** // Field: [31:0] IV // // The interpretation of this field depends on the crypto operation mode. #define CRYPTO_AESIV1_IV_W 32 #define CRYPTO_AESIV1_IV_M 0xFFFFFFFF #define CRYPTO_AESIV1_IV_S 0 //***************************************************************************** // // Register: CRYPTO_O_AESIV2 // //***************************************************************************** // Field: [31:0] IV // // The interpretation of this field depends on the crypto operation mode. #define CRYPTO_AESIV2_IV_W 32 #define CRYPTO_AESIV2_IV_M 0xFFFFFFFF #define CRYPTO_AESIV2_IV_S 0 //***************************************************************************** // // Register: CRYPTO_O_AESIV3 // //***************************************************************************** // Field: [31:0] IV // // The interpretation of this field depends on the crypto operation mode. #define CRYPTO_AESIV3_IV_W 32 #define CRYPTO_AESIV3_IV_M 0xFFFFFFFF #define CRYPTO_AESIV3_IV_S 0 //***************************************************************************** // // Register: CRYPTO_O_AESCTL // //***************************************************************************** // Field: [31] CONTEXT_RDY // // If 1, this status bit indicates that the context data registers can be // overwritten and the Host is permitted to write the next context. Writing a // context means writing either a mode, the crypto length or // AESDATALEN1.LEN_MSW, AESDATALEN0.LEN_LSW length registers #define CRYPTO_AESCTL_CONTEXT_RDY 0x80000000 #define CRYPTO_AESCTL_CONTEXT_RDY_BITN 31 #define CRYPTO_AESCTL_CONTEXT_RDY_M 0x80000000 #define CRYPTO_AESCTL_CONTEXT_RDY_S 31 // Field: [30] SAVED_CONTEXT_RDY // // If read as 1, this status bit indicates that an AES authentication TAG // and/or IV block(s) is/are available for the Host to retrieve. This bit is // only asserted if SAVE_CONTEXT is set to 1. The bit is mutually exclusive // with CONTEXT_RDY. // // Writing 1 clears the bit to zero, indicating the Crypto peripheral can start // its next operation. This bit is also cleared when the 4th word of the output // TAG and/or IV is read. // // Note: All other mode bit writes will be ignored when this mode bit is // written with 1. // // Note: This bit is controlled automatically by the Crypto peripheral for TAG // read DMA operations. // // For typical use, this bit does NOT need to be written, but is used for // status reading only. In this case, this status bit is automatically // maintained by the Crypto peripheral. #define CRYPTO_AESCTL_SAVED_CONTEXT_RDY 0x40000000 #define CRYPTO_AESCTL_SAVED_CONTEXT_RDY_BITN 30 #define CRYPTO_AESCTL_SAVED_CONTEXT_RDY_M 0x40000000 #define CRYPTO_AESCTL_SAVED_CONTEXT_RDY_S 30 // Field: [29] SAVE_CONTEXT // // IV must be read before the AES engine can start a new operation. #define CRYPTO_AESCTL_SAVE_CONTEXT 0x20000000 #define CRYPTO_AESCTL_SAVE_CONTEXT_BITN 29 #define CRYPTO_AESCTL_SAVE_CONTEXT_M 0x20000000 #define CRYPTO_AESCTL_SAVE_CONTEXT_S 29 // Field: [24:22] CCM_M // // Defines M that indicates the length of the authentication field for CCM // operations; the authentication field length equals two times the value of // CCM_M plus one. // Note: The Crypto peripheral always returns a 128-bit authentication field, // of which the M least significant bytes are valid. All values are supported. #define CRYPTO_AESCTL_CCM_M_W 3 #define CRYPTO_AESCTL_CCM_M_M 0x01C00000 #define CRYPTO_AESCTL_CCM_M_S 22 // Field: [21:19] CCM_L // // Defines L that indicates the width of the length field for CCM operations; // the length field in bytes equals the value of CMM_L plus one. All values are // supported. #define CRYPTO_AESCTL_CCM_L_W 3 #define CRYPTO_AESCTL_CCM_L_M 0x00380000 #define CRYPTO_AESCTL_CCM_L_S 19 // Field: [18] CCM // // AES-CCM mode enable. // AES-CCM is a combined mode, using AES for both authentication and // encryption. // Note: Selecting AES-CCM mode requires writing of AESDATALEN1.LEN_MSW and // AESDATALEN0.LEN_LSW after all other registers. // Note: The CTR mode bit in this register must also be set to 1 to enable // AES-CTR; selecting other AES modes than CTR mode is invalid. #define CRYPTO_AESCTL_CCM 0x00040000 #define CRYPTO_AESCTL_CCM_BITN 18 #define CRYPTO_AESCTL_CCM_M 0x00040000 #define CRYPTO_AESCTL_CCM_S 18 // Field: [15] CBC_MAC // // MAC mode enable. // The DIR bit must be set to 1 for this mode. // Selecting this mode requires writing the AESDATALEN1.LEN_MSW and // AESDATALEN0.LEN_LSW registers after all other registers. #define CRYPTO_AESCTL_CBC_MAC 0x00008000 #define CRYPTO_AESCTL_CBC_MAC_BITN 15 #define CRYPTO_AESCTL_CBC_MAC_M 0x00008000 #define CRYPTO_AESCTL_CBC_MAC_S 15 // Field: [8:7] CTR_WIDTH // // Specifies the counter width for AES-CTR mode // ENUMs: // 128_BIT 128 bits // 96_BIT 96 bits // 64_BIT 64 bits // 32_BIT 32 bits #define CRYPTO_AESCTL_CTR_WIDTH_W 2 #define CRYPTO_AESCTL_CTR_WIDTH_M 0x00000180 #define CRYPTO_AESCTL_CTR_WIDTH_S 7 #define CRYPTO_AESCTL_CTR_WIDTH_128_BIT 0x00000180 #define CRYPTO_AESCTL_CTR_WIDTH_96_BIT 0x00000100 #define CRYPTO_AESCTL_CTR_WIDTH_64_BIT 0x00000080 #define CRYPTO_AESCTL_CTR_WIDTH_32_BIT 0x00000000 // Field: [6] CTR // // AES-CTR mode enable // This bit must also be set for CCM, when encryption/decryption is required. #define CRYPTO_AESCTL_CTR 0x00000040 #define CRYPTO_AESCTL_CTR_BITN 6 #define CRYPTO_AESCTL_CTR_M 0x00000040 #define CRYPTO_AESCTL_CTR_S 6 // Field: [5] CBC // // CBC mode enable #define CRYPTO_AESCTL_CBC 0x00000020 #define CRYPTO_AESCTL_CBC_BITN 5 #define CRYPTO_AESCTL_CBC_M 0x00000020 #define CRYPTO_AESCTL_CBC_S 5 // Field: [4:3] KEY_SIZE // // This field specifies the key size. // The key size is automatically configured when a new key is loaded via the // key store module. // 00 = N/A - reserved // 01 = 128 bits // 10 = N/A - reserved // 11 = N/A - reserved // For the Crypto peripheral this field is fixed to 128 bits. #define CRYPTO_AESCTL_KEY_SIZE_W 2 #define CRYPTO_AESCTL_KEY_SIZE_M 0x00000018 #define CRYPTO_AESCTL_KEY_SIZE_S 3 // Field: [2] DIR // // Direction. // 0 : Decrypt operation is performed. // 1 : Encrypt operation is performed. // // This bit must be written with a 1 when CBC-MAC is selected. #define CRYPTO_AESCTL_DIR 0x00000004 #define CRYPTO_AESCTL_DIR_BITN 2 #define CRYPTO_AESCTL_DIR_M 0x00000004 #define CRYPTO_AESCTL_DIR_S 2 // Field: [1] INPUT_RDY // // If read as 1, this status bit indicates that the 16-byte AES input buffer is // empty. The Host is permitted to write the next block of data. // // Writing a 0 clears the bit to zero and indicates that the AES engine can use // the provided input data block. // // Writing a 1 to this bit will be ignored. // // Note: For DMA operations, this bit is automatically controlled by the Crypto // peripheral. // After reset, this bit is 0. After writing a context (note 1), this bit will // become 1. // // For typical use, this bit does NOT need to be written, but is used for // status reading only. In this case, this status bit is automatically // maintained by the Crypto peripheral. #define CRYPTO_AESCTL_INPUT_RDY 0x00000002 #define CRYPTO_AESCTL_INPUT_RDY_BITN 1 #define CRYPTO_AESCTL_INPUT_RDY_M 0x00000002 #define CRYPTO_AESCTL_INPUT_RDY_S 1 // Field: [0] OUTPUT_RDY // // If read as 1, this status bit indicates that an AES output block is // available to be retrieved by the Host. // // Writing a 0 clears the bit to zero and indicates that output data is read by // the Host. The AES engine can provide a next output data block. // // Writing a 1 to this bit will be ignored. // // Note: For DMA operations, this bit is automatically controlled by the Crypto // peripheral. // // For typical use, this bit does NOT need to be written, but is used for // status reading only. In this case, this status bit is automatically // maintained by the Crypto peripheral. #define CRYPTO_AESCTL_OUTPUT_RDY 0x00000001 #define CRYPTO_AESCTL_OUTPUT_RDY_BITN 0 #define CRYPTO_AESCTL_OUTPUT_RDY_M 0x00000001 #define CRYPTO_AESCTL_OUTPUT_RDY_S 0 //***************************************************************************** // // Register: CRYPTO_O_AESDATALEN0 // //***************************************************************************** // Field: [31:0] LEN_LSW // // Used to write the Length values to the Crypto peripheral. // // This register contains bits [31:0] of the combined data length. #define CRYPTO_AESDATALEN0_LEN_LSW_W 32 #define CRYPTO_AESDATALEN0_LEN_LSW_M 0xFFFFFFFF #define CRYPTO_AESDATALEN0_LEN_LSW_S 0 //***************************************************************************** // // Register: CRYPTO_O_AESDATALEN1 // //***************************************************************************** // Field: [28:0] LEN_MSW // // Bits [60:32] of the combined data length. // // Bits [60:0] of the crypto length registers AESDATALEN1 and AESDATALEN0 store // the cryptographic data length in bytes for all modes. Once processing with // this context is started, this length decrements to zero. Data lengths up to // (2^61 - 1) bytes are allowed. // For GCM, any value up to 2^36 - 32 bytes can be used. This is because a // 32-bit counter mode is used; the maximum number of 128-bit blocks is 2^32 - // 2, resulting in a maximum number of bytes of 2^36 - 32. // Writing to this register triggers the engine to start using this context. // This is valid for all modes except GCM and CCM. // Note: For the combined modes (GCM and CCM), this length does not include the // authentication only data; the authentication length is specified in the // AESAUTHLEN.LEN. // All modes must have a length > 0. For the combined modes, it is allowed to // have one of the lengths equal to zero. // For the basic encryption modes (ECB/CBC/CTR) it is allowed to program zero // to the length field; in that case the length is assumed infinite. // All data must be byte (8-bit) aligned for stream cipher modes; bit aligned // data streams are not supported by the Crypto peripheral. For block cipher // modes, the data length must be programmed in multiples of the block cipher // size, 16 bytes. #define CRYPTO_AESDATALEN1_LEN_MSW_W 29 #define CRYPTO_AESDATALEN1_LEN_MSW_M 0x1FFFFFFF #define CRYPTO_AESDATALEN1_LEN_MSW_S 0 //***************************************************************************** // // Register: CRYPTO_O_AESAUTHLEN // //***************************************************************************** // Field: [31:0] LEN // // Authentication data length in bytes for combined mode, CCM only. // Supported AAD-lengths for CCM are from 0 to (216 - 28) bytes. Once // processing with this context is started, this length decrements to zero. // Writing this register triggers the engine to start using this context for // CCM. #define CRYPTO_AESAUTHLEN_LEN_W 32 #define CRYPTO_AESAUTHLEN_LEN_M 0xFFFFFFFF #define CRYPTO_AESAUTHLEN_LEN_S 0 //***************************************************************************** // // Register: CRYPTO_O_AESDATAOUT0 // //***************************************************************************** // Field: [31:0] DATA // // Data register 0 for output block data from the Crypto peripheral. // These bits = AES Output Data[31:0] of {127:0] // // For normal operations, this register is not used, since data input and // output is transferred from and to the AES engine via DMA. // // For a Host read operation, these registers contain the 128-bit output block // from the latest AES operation. Reading from a word-aligned offset within // this address range will read one word (4 bytes) of data out the 4-word deep // (16 bytes = 128-bits AES block) data output buffer. The words (4 words, one // full block) should be read before the core will move the next block to the // data output buffer. To empty the data output buffer, AESCTL.OUTPUT_RDY must // be written. // For the modes with authentication (CBC-MAC, GCM and CCM), the invalid // (message) bytes/words can be written with any data. // // Note: The AAD / authentication only data is not copied to the output buffer // but only used for authentication. #define CRYPTO_AESDATAOUT0_DATA_W 32 #define CRYPTO_AESDATAOUT0_DATA_M 0xFFFFFFFF #define CRYPTO_AESDATAOUT0_DATA_S 0 //***************************************************************************** // // Register: CRYPTO_O_AESDATAIN0 // //***************************************************************************** // Field: [31:0] DATA // // Data registers for input block data to the Crypto peripheral. // These bits = AES Input Data[31:0] of [127:0] // // For normal operations, this register is not used, since data input and // output is transferred from and to the AES engine via DMA. // // For a Host write operation, these registers must be written with the 128-bit // input block for the next AES operation. Writing at a word-aligned offset // within this address range will store the word (4 bytes) of data into the // corresponding position of 4-word deep (16 bytes = 128-bit AES block) data // input buffer. This buffer is used for the next AES operation. If the last // data block is not completely filled with valid data (see notes below), it is // allowed to write only the words with valid data. Next AES operation is // triggered by writing to AESCTL.INPUT_RDY. // // Note: AES typically operates on 128 bits block multiple input data. The CTR, // GCM and CCM modes form an exception. The last block of a CTR-mode message // may contain less than 128 bits (refer to [NIST 800-38A]): 0 < n <= 128 bits. // For GCM/CCM, the last block of both AAD and message data may contain less // than 128 bits (refer to [NIST 800-38D]). The Crypto peripheral automatically // pads or masks misaligned ending data blocks with zeroes for GCM, CCM and // CBC-MAC. For CTR mode, the remaining data in an unaligned data block is // ignored. #define CRYPTO_AESDATAIN0_DATA_W 32 #define CRYPTO_AESDATAIN0_DATA_M 0xFFFFFFFF #define CRYPTO_AESDATAIN0_DATA_S 0 //***************************************************************************** // // Register: CRYPTO_O_AESDATAOUT1 // //***************************************************************************** // Field: [31:0] DATA // // Data registers for output block data from the Crypto peripheral. // These bits = AES Output Data[63:32] of [127:0] // // For normal operations, this register is not used, since data input and // output is transferred from and to the AES engine via DMA. // // For a Host read operation, these registers contain the 128-bit output block // from the latest AES operation. Reading from a word-aligned offset within // this address range will read one word (4 bytes) of data out the 4-word deep // (16 bytes = 128-bits AES block) data output buffer. The words (4 words, one // full block) should be read before the core will move the next block to the // data output buffer. To empty the data output buffer, AESCTL.OUTPUT_RDY must // be written. // For the modes with authentication (CBC-MAC, GCM and CCM), the invalid // (message) bytes/words can be written with any data. // // Note: The AAD / authentication only data is not copied to the output buffer // but only used for authentication. #define CRYPTO_AESDATAOUT1_DATA_W 32 #define CRYPTO_AESDATAOUT1_DATA_M 0xFFFFFFFF #define CRYPTO_AESDATAOUT1_DATA_S 0 //***************************************************************************** // // Register: CRYPTO_O_AESDATAIN1 // //***************************************************************************** // Field: [31:0] DATA // // Data registers for input block data to the Crypto peripheral. // These bits = AES Input Data[63:32] of [127:0] // // For normal operations, this register is not used, since data input and // output is transferred from and to the AES engine via DMA. // // For a Host write operation, these registers must be written with the 128-bit // input block for the next AES operation. Writing at a word-aligned offset // within this address range will store the word (4 bytes) of data into the // corresponding position of 4-word deep (16 bytes = 128-bit AES block) data // input buffer. This buffer is used for the next AES operation. If the last // data block is not completely filled with valid data (see notes below), it is // allowed to write only the words with valid data. Next AES operation is // triggered by writing to AESCTL.INPUT_RDY. // // Note: AES typically operates on 128 bits block multiple input data. The CTR, // GCM and CCM modes form an exception. The last block of a CTR-mode message // may contain less than 128 bits (refer to [NIST 800-38A]): 0 < n <= 128 bits. // For GCM/CCM, the last block of both AAD and message data may contain less // than 128 bits (refer to [NIST 800-38D]). The Crypto peripheral automatically // pads or masks misaligned ending data blocks with zeroes for GCM, CCM and // CBC-MAC. For CTR mode, the remaining data in an unaligned data block is // ignored. #define CRYPTO_AESDATAIN1_DATA_W 32 #define CRYPTO_AESDATAIN1_DATA_M 0xFFFFFFFF #define CRYPTO_AESDATAIN1_DATA_S 0 //***************************************************************************** // // Register: CRYPTO_O_AESDATAOUT2 // //***************************************************************************** // Field: [31:0] DATA // // Data registers for output block data from the Crypto peripheral. // These bits = AES Output Data[95:64] of [127:0] // // For normal operations, this register is not used, since data input and // output is transferred from and to the AES engine via DMA. // // For a Host read operation, these registers contain the 128-bit output block // from the latest AES operation. Reading from a word-aligned offset within // this address range will read one word (4 bytes) of data out the 4-word deep // (16 bytes = 128-bits AES block) data output buffer. The words (4 words, one // full block) should be read before the core will move the next block to the // data output buffer. To empty the data output buffer, AESCTL.OUTPUT_RDY must // be written. // For the modes with authentication (CBC-MAC, GCM and CCM), the invalid // (message) bytes/words can be written with any data. // // Note: The AAD / authentication only data is not copied to the output buffer // but only used for authentication. #define CRYPTO_AESDATAOUT2_DATA_W 32 #define CRYPTO_AESDATAOUT2_DATA_M 0xFFFFFFFF #define CRYPTO_AESDATAOUT2_DATA_S 0 //***************************************************************************** // // Register: CRYPTO_O_AESDATAIN2 // //***************************************************************************** // Field: [31:0] DATA // // Data registers for input block data to the Crypto peripheral. // These bits = AES Input Data[95:64] of [127:0] // // For normal operations, this register is not used, since data input and // output is transferred from and to the AES engine via DMA. // // For a Host write operation, these registers must be written with the 128-bit // input block for the next AES operation. Writing at a word-aligned offset // within this address range will store the word (4 bytes) of data into the // corresponding position of 4-word deep (16 bytes = 128-bit AES block) data // input buffer. This buffer is used for the next AES operation. If the last // data block is not completely filled with valid data (see notes below), it is // allowed to write only the words with valid data. Next AES operation is // triggered by writing to AESCTL.INPUT_RDY. // // Note: AES typically operates on 128 bits block multiple input data. The CTR, // GCM and CCM modes form an exception. The last block of a CTR-mode message // may contain less than 128 bits (refer to [NIST 800-38A]): 0 < n <= 128 bits. // For GCM/CCM, the last block of both AAD and message data may contain less // than 128 bits (refer to [NIST 800-38D]). The Crypto peripheral automatically // pads or masks misaligned ending data blocks with zeroes for GCM, CCM and // CBC-MAC. For CTR mode, the remaining data in an unaligned data block is // ignored. #define CRYPTO_AESDATAIN2_DATA_W 32 #define CRYPTO_AESDATAIN2_DATA_M 0xFFFFFFFF #define CRYPTO_AESDATAIN2_DATA_S 0 //***************************************************************************** // // Register: CRYPTO_O_AESDATAOUT3 // //***************************************************************************** // Field: [31:0] DATA // // Data registers for output block data from the Crypto peripheral. // These bits = AES Output Data[127:96] of [127:0] // // For normal operations, this register is not used, since data input and // output is transferred from and to the AES engine via DMA. // // For a Host read operation, these registers contain the 128-bit output block // from the latest AES operation. Reading from a word-aligned offset within // this address range will read one word (4 bytes) of data out the 4-word deep // (16 bytes = 128-bits AES block) data output buffer. The words (4 words, one // full block) should be read before the core will move the next block to the // data output buffer. To empty the data output buffer, AESCTL.OUTPUT_RDY must // be written. // For the modes with authentication (CBC-MAC, GCM and CCM), the invalid // (message) bytes/words can be written with any data. // // Note: The AAD / authentication only data is not copied to the output buffer // but only used for authentication. #define CRYPTO_AESDATAOUT3_DATA_W 32 #define CRYPTO_AESDATAOUT3_DATA_M 0xFFFFFFFF #define CRYPTO_AESDATAOUT3_DATA_S 0 //***************************************************************************** // // Register: CRYPTO_O_AESDATAIN3 // //***************************************************************************** // Field: [31:0] DATA // // Data registers for input block data to the Crypto peripheral. // These bits = AES Input Data[127:96] of [127:0] // // For normal operations, this register is not used, since data input and // output is transferred from and to the AES engine via DMA. // // For a Host write operation, these registers must be written with the 128-bit // input block for the next AES operation. Writing at a word-aligned offset // within this address range will store the word (4 bytes) of data into the // corresponding position of 4-word deep (16 bytes = 128-bit AES block) data // input buffer. This buffer is used for the next AES operation. If the last // data block is not completely filled with valid data (see notes below), it is // allowed to write only the words with valid data. Next AES operation is // triggered by writing to AESCTL.INPUT_RDY. // // Note: AES typically operates on 128 bits block multiple input data. The CTR, // GCM and CCM modes form an exception. The last block of a CTR-mode message // may contain less than 128 bits (refer to [NIST 800-38A]): 0 < n <= 128 bits. // For GCM/CCM, the last block of both AAD and message data may contain less // than 128 bits (refer to [NIST 800-38D]). The Crypto peripheral automatically // pads or masks misaligned ending data blocks with zeroes for GCM, CCM and // CBC-MAC. For CTR mode, the remaining data in an unaligned data block is // ignored. #define CRYPTO_AESDATAIN3_DATA_W 32 #define CRYPTO_AESDATAIN3_DATA_M 0xFFFFFFFF #define CRYPTO_AESDATAIN3_DATA_S 0 //***************************************************************************** // // Register: CRYPTO_O_AESTAGOUT0 // //***************************************************************************** // Field: [31:0] TAG // // This register contains the authentication TAG for the combined and // authentication-only modes. #define CRYPTO_AESTAGOUT0_TAG_W 32 #define CRYPTO_AESTAGOUT0_TAG_M 0xFFFFFFFF #define CRYPTO_AESTAGOUT0_TAG_S 0 //***************************************************************************** // // Register: CRYPTO_O_AESTAGOUT1 // //***************************************************************************** // Field: [31:0] TAG // // This register contains the authentication TAG for the combined and // authentication-only modes. #define CRYPTO_AESTAGOUT1_TAG_W 32 #define CRYPTO_AESTAGOUT1_TAG_M 0xFFFFFFFF #define CRYPTO_AESTAGOUT1_TAG_S 0 //***************************************************************************** // // Register: CRYPTO_O_AESTAGOUT2 // //***************************************************************************** // Field: [31:0] TAG // // This register contains the authentication TAG for the combined and // authentication-only modes. #define CRYPTO_AESTAGOUT2_TAG_W 32 #define CRYPTO_AESTAGOUT2_TAG_M 0xFFFFFFFF #define CRYPTO_AESTAGOUT2_TAG_S 0 //***************************************************************************** // // Register: CRYPTO_O_AESTAGOUT3 // //***************************************************************************** // Field: [31:0] TAG // // This register contains the authentication TAG for the combined and // authentication-only modes. #define CRYPTO_AESTAGOUT3_TAG_W 32 #define CRYPTO_AESTAGOUT3_TAG_M 0xFFFFFFFF #define CRYPTO_AESTAGOUT3_TAG_S 0 //***************************************************************************** // // Register: CRYPTO_O_ALGSEL // //***************************************************************************** // Field: [31] TAG // // If this bit is cleared to 0, the DMA operation involves only data. // If this bit is set, the DMA operation includes a TAG (Authentication Result // / Digest). #define CRYPTO_ALGSEL_TAG 0x80000000 #define CRYPTO_ALGSEL_TAG_BITN 31 #define CRYPTO_ALGSEL_TAG_M 0x80000000 #define CRYPTO_ALGSEL_TAG_S 31 // Field: [1] AES // // If set to 1, the AES data is loaded via DMA // Both Read and Write maximum transfer size to DMA engine is set to 16 bytes #define CRYPTO_ALGSEL_AES 0x00000002 #define CRYPTO_ALGSEL_AES_BITN 1 #define CRYPTO_ALGSEL_AES_M 0x00000002 #define CRYPTO_ALGSEL_AES_S 1 // Field: [0] KEY_STORE // // If set to 1, selects the Key Store to be loaded via DMA. // The maximum transfer size to DMA engine is set to 32 bytes (however // transfers of 16, 24 and 32 bytes are allowed) #define CRYPTO_ALGSEL_KEY_STORE 0x00000001 #define CRYPTO_ALGSEL_KEY_STORE_BITN 0 #define CRYPTO_ALGSEL_KEY_STORE_M 0x00000001 #define CRYPTO_ALGSEL_KEY_STORE_S 0 //***************************************************************************** // // Register: CRYPTO_O_DMAPROTCTL // //***************************************************************************** // Field: [0] EN // // Select AHB transfer protection control for DMA transfers using the key store // area as destination. // 0 : transfers use 'USER' type access. // 1 : transfers use 'PRIVILEGED' type access. #define CRYPTO_DMAPROTCTL_EN 0x00000001 #define CRYPTO_DMAPROTCTL_EN_BITN 0 #define CRYPTO_DMAPROTCTL_EN_M 0x00000001 #define CRYPTO_DMAPROTCTL_EN_S 0 //***************************************************************************** // // Register: CRYPTO_O_SWRESET // //***************************************************************************** // Field: [0] RESET // // If this bit is set to 1, the following modules are reset: // - Master control internal state is reset. That includes interrupt, error // status register and result available interrupt generation FSM. // - Key store module state is reset. That includes clearing the Written Area // flags; therefore the keys must be reloaded to the key store module. // Writing 0 has no effect. // The bit is self cleared after executing the reset. #define CRYPTO_SWRESET_RESET 0x00000001 #define CRYPTO_SWRESET_RESET_BITN 0 #define CRYPTO_SWRESET_RESET_M 0x00000001 #define CRYPTO_SWRESET_RESET_S 0 //***************************************************************************** // // Register: CRYPTO_O_IRQTYPE // //***************************************************************************** // Field: [0] LEVEL // // If this bit is 0, the interrupt output is a pulse. // If this bit is set to 1, the interrupt is a level interrupt that must be // cleared by writing the interrupt clear register. // This bit is applicable for both interrupt output signals. #define CRYPTO_IRQTYPE_LEVEL 0x00000001 #define CRYPTO_IRQTYPE_LEVEL_BITN 0 #define CRYPTO_IRQTYPE_LEVEL_M 0x00000001 #define CRYPTO_IRQTYPE_LEVEL_S 0 //***************************************************************************** // // Register: CRYPTO_O_IRQEN // //***************************************************************************** // Field: [1] DMA_IN_DONE // // This bit enables IRQSTAT.DMA_IN_DONE as source for IRQ. #define CRYPTO_IRQEN_DMA_IN_DONE 0x00000002 #define CRYPTO_IRQEN_DMA_IN_DONE_BITN 1 #define CRYPTO_IRQEN_DMA_IN_DONE_M 0x00000002 #define CRYPTO_IRQEN_DMA_IN_DONE_S 1 // Field: [0] RESULT_AVAIL // // This bit enables IRQSTAT.RESULT_AVAIL as source for IRQ. #define CRYPTO_IRQEN_RESULT_AVAIL 0x00000001 #define CRYPTO_IRQEN_RESULT_AVAIL_BITN 0 #define CRYPTO_IRQEN_RESULT_AVAIL_M 0x00000001 #define CRYPTO_IRQEN_RESULT_AVAIL_S 0 //***************************************************************************** // // Register: CRYPTO_O_IRQCLR // //***************************************************************************** // Field: [31] DMA_BUS_ERR // // If 1 is written to this bit, IRQSTAT.DMA_BUS_ERR is cleared. #define CRYPTO_IRQCLR_DMA_BUS_ERR 0x80000000 #define CRYPTO_IRQCLR_DMA_BUS_ERR_BITN 31 #define CRYPTO_IRQCLR_DMA_BUS_ERR_M 0x80000000 #define CRYPTO_IRQCLR_DMA_BUS_ERR_S 31 // Field: [30] KEY_ST_WR_ERR // // If 1 is written to this bit, IRQSTAT.KEY_ST_WR_ERR is cleared. #define CRYPTO_IRQCLR_KEY_ST_WR_ERR 0x40000000 #define CRYPTO_IRQCLR_KEY_ST_WR_ERR_BITN 30 #define CRYPTO_IRQCLR_KEY_ST_WR_ERR_M 0x40000000 #define CRYPTO_IRQCLR_KEY_ST_WR_ERR_S 30 // Field: [29] KEY_ST_RD_ERR // // If 1 is written to this bit, IRQSTAT.KEY_ST_RD_ERR is cleared. #define CRYPTO_IRQCLR_KEY_ST_RD_ERR 0x20000000 #define CRYPTO_IRQCLR_KEY_ST_RD_ERR_BITN 29 #define CRYPTO_IRQCLR_KEY_ST_RD_ERR_M 0x20000000 #define CRYPTO_IRQCLR_KEY_ST_RD_ERR_S 29 // Field: [1] DMA_IN_DONE // // If 1 is written to this bit, IRQSTAT.DMA_IN_DONE is cleared. #define CRYPTO_IRQCLR_DMA_IN_DONE 0x00000002 #define CRYPTO_IRQCLR_DMA_IN_DONE_BITN 1 #define CRYPTO_IRQCLR_DMA_IN_DONE_M 0x00000002 #define CRYPTO_IRQCLR_DMA_IN_DONE_S 1 // Field: [0] RESULT_AVAIL // // If 1 is written to this bit, IRQSTAT.RESULT_AVAIL is cleared. #define CRYPTO_IRQCLR_RESULT_AVAIL 0x00000001 #define CRYPTO_IRQCLR_RESULT_AVAIL_BITN 0 #define CRYPTO_IRQCLR_RESULT_AVAIL_M 0x00000001 #define CRYPTO_IRQCLR_RESULT_AVAIL_S 0 //***************************************************************************** // // Register: CRYPTO_O_IRQSET // //***************************************************************************** // Field: [1] DMA_IN_DONE // // If 1 is written to this bit, IRQSTAT.DMA_IN_DONE is set. // Writing 0 has no effect. #define CRYPTO_IRQSET_DMA_IN_DONE 0x00000002 #define CRYPTO_IRQSET_DMA_IN_DONE_BITN 1 #define CRYPTO_IRQSET_DMA_IN_DONE_M 0x00000002 #define CRYPTO_IRQSET_DMA_IN_DONE_S 1 // Field: [0] RESULT_AVAIL // // If 1 is written to this bit, IRQSTAT.RESULT_AVAIL is set. // Writing 0 has no effect. #define CRYPTO_IRQSET_RESULT_AVAIL 0x00000001 #define CRYPTO_IRQSET_RESULT_AVAIL_BITN 0 #define CRYPTO_IRQSET_RESULT_AVAIL_M 0x00000001 #define CRYPTO_IRQSET_RESULT_AVAIL_S 0 //***************************************************************************** // // Register: CRYPTO_O_IRQSTAT // //***************************************************************************** // Field: [31] DMA_BUS_ERR // // This bit is set when a DMA bus error is detected during a DMA operation. The // value of this register is held until it is cleared via IRQCLR.DMA_BUS_ERR // Note: This error is asserted if an error is detected on the AHB master // interface during a DMA operation. // Note: This is not an interrupt source. #define CRYPTO_IRQSTAT_DMA_BUS_ERR 0x80000000 #define CRYPTO_IRQSTAT_DMA_BUS_ERR_BITN 31 #define CRYPTO_IRQSTAT_DMA_BUS_ERR_M 0x80000000 #define CRYPTO_IRQSTAT_DMA_BUS_ERR_S 31 // Field: [30] KEY_ST_WR_ERR // // This bit is set when a write error is detected during the DMA write // operation to the key store memory. The value of this register is held until // it is cleared via IRQCLR.KEY_ST_WR_ERR // Note: This error is asserted if a DMA operation does not cover a full key // area or more areas are written than expected. // Note: This is not an interrupt source. #define CRYPTO_IRQSTAT_KEY_ST_WR_ERR 0x40000000 #define CRYPTO_IRQSTAT_KEY_ST_WR_ERR_BITN 30 #define CRYPTO_IRQSTAT_KEY_ST_WR_ERR_M 0x40000000 #define CRYPTO_IRQSTAT_KEY_ST_WR_ERR_S 30 // Field: [29] KEY_ST_RD_ERR // // This bit will be set when a read error is detected during the read of a key // from the key store, while copying it to the AES engine. The value of this // register is held until it is cleared via IRQCLR.KEY_ST_RD_ERR. // Note: This error is asserted if a key location is selected in the key store // that is not available. // Note: This is not an interrupt source. #define CRYPTO_IRQSTAT_KEY_ST_RD_ERR 0x20000000 #define CRYPTO_IRQSTAT_KEY_ST_RD_ERR_BITN 29 #define CRYPTO_IRQSTAT_KEY_ST_RD_ERR_M 0x20000000 #define CRYPTO_IRQSTAT_KEY_ST_RD_ERR_S 29 // Field: [1] DMA_IN_DONE // // This bit returns the status of DMA data in done interrupt. #define CRYPTO_IRQSTAT_DMA_IN_DONE 0x00000002 #define CRYPTO_IRQSTAT_DMA_IN_DONE_BITN 1 #define CRYPTO_IRQSTAT_DMA_IN_DONE_M 0x00000002 #define CRYPTO_IRQSTAT_DMA_IN_DONE_S 1 // Field: [0] RESULT_AVAIL // // This bit is set high when the Crypto peripheral has a result available. #define CRYPTO_IRQSTAT_RESULT_AVAIL 0x00000001 #define CRYPTO_IRQSTAT_RESULT_AVAIL_BITN 0 #define CRYPTO_IRQSTAT_RESULT_AVAIL_M 0x00000001 #define CRYPTO_IRQSTAT_RESULT_AVAIL_S 0 //***************************************************************************** // // Register: CRYPTO_O_HWVER // //***************************************************************************** // Field: [27:24] HW_MAJOR_VER // // Major version number #define CRYPTO_HWVER_HW_MAJOR_VER_W 4 #define CRYPTO_HWVER_HW_MAJOR_VER_M 0x0F000000 #define CRYPTO_HWVER_HW_MAJOR_VER_S 24 // Field: [23:20] HW_MINOR_VER // // Minor version number #define CRYPTO_HWVER_HW_MINOR_VER_W 4 #define CRYPTO_HWVER_HW_MINOR_VER_M 0x00F00000 #define CRYPTO_HWVER_HW_MINOR_VER_S 20 // Field: [19:16] HW_PATCH_LVL // // Patch level, starts at 0 at first delivery of this version. #define CRYPTO_HWVER_HW_PATCH_LVL_W 4 #define CRYPTO_HWVER_HW_PATCH_LVL_M 0x000F0000 #define CRYPTO_HWVER_HW_PATCH_LVL_S 16 // Field: [15:8] VER_NUM_COMPL // // These bits simply contain the complement of VER_NUM (0x87), used by a driver // to ascertain that the Crypto peripheral register is indeed read. #define CRYPTO_HWVER_VER_NUM_COMPL_W 8 #define CRYPTO_HWVER_VER_NUM_COMPL_M 0x0000FF00 #define CRYPTO_HWVER_VER_NUM_COMPL_S 8 // Field: [7:0] VER_NUM // // The version number for the Crypto peripheral, this field contains the value // 120 (decimal) or 0x78. #define CRYPTO_HWVER_VER_NUM_W 8 #define CRYPTO_HWVER_VER_NUM_M 0x000000FF #define CRYPTO_HWVER_VER_NUM_S 0 #endif // __CRYPTO__