/* * Copyright (C) 2017 Freie Universität Berlin * * This file is subject to the terms and conditions of the GNU Lesser * General Public License v2.1. See the file LICENSE in the top level * directory for more details. */ /** * @ingroup tests * @{ * * @file * * @author Martine Lenders * @} */ #include #include #include "msg.h" #include "net/gnrc.h" #include "net/gnrc/ipv6.h" #include "net/gnrc/netif.h" #include "net/gnrc/netif/hdr.h" #include "net/gnrc/udp.h" #include "net/gnrc/pktdump.h" #include "timex.h" #include "utlist.h" #include "xtimer.h" #define SERVER_MSG_QUEUE_SIZE (8U) #define SERVER_PRIO (THREAD_PRIORITY_MAIN - 1) #define SERVER_STACKSIZE (THREAD_STACKSIZE_MAIN) #define SERVER_RESET (0x8fae) static gnrc_netreg_entry_t server = GNRC_NETREG_ENTRY_INIT_PID(0, KERNEL_PID_UNDEF); static char server_stack[SERVER_STACKSIZE]; static msg_t server_queue[SERVER_MSG_QUEUE_SIZE]; static kernel_pid_t server_pid = KERNEL_PID_UNDEF; static uint8_t send_count = 0; static void *_eventloop(void *arg) { (void)arg; msg_t msg, reply; unsigned int rcv_count = 0; /* setup the message queue */ msg_init_queue(server_queue, SERVER_MSG_QUEUE_SIZE); reply.content.value = (uint32_t)(-ENOTSUP); reply.type = GNRC_NETAPI_MSG_TYPE_ACK; while (1) { msg_receive(&msg); switch (msg.type) { case GNRC_NETAPI_MSG_TYPE_RCV: printf("Packets received: %d\n", ++rcv_count); gnrc_pktbuf_release(msg.content.ptr); break; case GNRC_NETAPI_MSG_TYPE_GET: case GNRC_NETAPI_MSG_TYPE_SET: msg_reply(&msg, &reply); break; case SERVER_RESET: rcv_count = 0; break; default: break; } } /* never reached */ return NULL; } static void send(char *addr_str, char *port_str, char *data_len_str, unsigned int num, unsigned int delay) { int iface; uint16_t port; ipv6_addr_t addr; size_t data_len; /* get interface, if available */ iface = ipv6_addr_split_iface(addr_str); if ((iface < 0) && (gnrc_netif_numof() == 1)) { iface = gnrc_netif_iter(NULL)->pid; } /* parse destination address */ if (ipv6_addr_from_str(&addr, addr_str) == NULL) { puts("Error: unable to parse destination address"); return; } /* parse port */ port = atoi(port_str); if (port == 0) { puts("Error: unable to parse destination port"); return; } data_len = atoi(data_len_str); if (data_len == 0) { puts("Error: unable to parse data_len"); return; } for (unsigned int i = 0; i < num; i++) { gnrc_pktsnip_t *payload, *udp, *ip; /* allocate payload */ payload = gnrc_pktbuf_add(NULL, NULL, data_len, GNRC_NETTYPE_UNDEF); if (payload == NULL) { puts("Error: unable to copy data to packet buffer"); return; } memset(payload->data, send_count++, data_len); /* allocate UDP header, set source port := destination port */ udp = gnrc_udp_hdr_build(payload, port, port); if (udp == NULL) { puts("Error: unable to allocate UDP header"); gnrc_pktbuf_release(payload); return; } /* allocate IPv6 header */ ip = gnrc_ipv6_hdr_build(udp, NULL, &addr); if (ip == NULL) { puts("Error: unable to allocate IPv6 header"); gnrc_pktbuf_release(udp); return; } /* add netif header, if interface was given */ if (iface > 0) { gnrc_pktsnip_t *netif = gnrc_netif_hdr_build(NULL, 0, NULL, 0); ((gnrc_netif_hdr_t *)netif->data)->if_pid = (kernel_pid_t)iface; LL_PREPEND(ip, netif); } /* send packet */ if (!gnrc_netapi_dispatch_send(GNRC_NETTYPE_UDP, GNRC_NETREG_DEMUX_CTX_ALL, ip)) { puts("Error: unable to locate UDP thread"); gnrc_pktbuf_release(ip); return; } /* access to `payload` was implicitly given up with the send operation above * => use original variable for output */ printf("Success: send %u byte to [%s]:%u\n", (unsigned)data_len, addr_str, port); xtimer_usleep(delay); } } static void start_server(char *port_str) { uint16_t port; /* check if server is already running */ if (server.target.pid != KERNEL_PID_UNDEF) { printf("Error: server already running on port %" PRIu32 "\n", server.demux_ctx); return; } /* parse port */ port = atoi(port_str); if (port == 0) { puts("Error: invalid port specified"); return; } if (server_pid <= KERNEL_PID_UNDEF) { /* start server */ server_pid = thread_create(server_stack, sizeof(server_stack), SERVER_PRIO, THREAD_CREATE_STACKTEST, _eventloop, NULL, "UDP server"); if (server_pid <= KERNEL_PID_UNDEF) { puts("Error: can not start server thread"); return; } } /* register server to receive messages from given port */ gnrc_netreg_entry_init_pid(&server, port, server_pid); gnrc_netreg_register(GNRC_NETTYPE_UDP, &server); printf("Success: started UDP server on port %" PRIu16 "\n", port); } static void stop_server(void) { msg_t msg = { .type = SERVER_RESET }; /* check if server is running at all */ if (server.target.pid == KERNEL_PID_UNDEF) { printf("Error: server was not running\n"); return; } /* reset server state */ msg_send(&msg, server.target.pid); /* stop server */ gnrc_netreg_unregister(GNRC_NETTYPE_UDP, &server); gnrc_netreg_entry_init_pid(&server, 0, KERNEL_PID_UNDEF); puts("Success: stopped UDP server"); } int udp_cmd(int argc, char **argv) { if (argc < 2) { printf("usage: %s [send|server|reset]\n", argv[0]); return 1; } if (strcmp(argv[1], "send") == 0) { uint32_t num = 1; uint32_t delay = 1000000LU; if (argc < 5) { printf("usage: %s send [ []]\n", argv[0]); return 1; } if (argc > 5) { num = atoi(argv[5]); } if (argc > 6) { delay = atoi(argv[6]); } send(argv[2], argv[3], argv[4], num, delay); } else if (strcmp(argv[1], "server") == 0) { if (argc < 3) { printf("usage: %s server [start|stop]\n", argv[0]); return 1; } if (strcmp(argv[2], "start") == 0) { if (argc < 4) { printf("usage %s server start \n", argv[0]); return 1; } start_server(argv[3]); } else if (strcmp(argv[2], "stop") == 0) { stop_server(); } else { puts("error: invalid command"); } } else if (strcmp(argv[1], "reset") == 0) { if (server_pid > KERNEL_PID_UNDEF) { msg_t msg = { .type = SERVER_RESET }; msg_send(&msg, server_pid); send_count = (uint8_t)0; } } else { puts("error: invalid command"); } return 0; }