/* * Copyright (C) 2016 Alexander Aring * Freie Universität Berlin * HAW Hamburg * Kaspar Schleiser * * This file is subject to the terms and conditions of the GNU Lesser * General Public License v2.1. See the file LICENSE in the top level * directory for more details. */ /** * @defgroup net_sock Sock API * @ingroup net * @brief Provides a network API for applications and library * * About * ===== * * ~~~~~~~~~~~~~~~~~~~~ * +---------------+ * | Application | * +---------------+ * ^ * | * v * sock * ^ * | * v * +---------------+ * | Network Stack | * +---------------+ * ~~~~~~~~~~~~~~~~~~~~ * * This module provides a set of functions to establish connections or send and * receive datagrams using different types of protocols. Together, they serve as * an API that allows an application or library to connect to a network. * * It was designed with the following priorities in mind * * 1. No need for dynamic memory allocation * 2. User friendliness * 3. Simplicity * 4. Efficiency (at both front- and backend) * 5. Portability * * Currently the following `sock` types are defined: * * * @ref sock_ip_t (net/sock/ip.h): raw IP sock * * @ref sock_tcp_t (net/sock/tcp.h): TCP sock * * @ref sock_udp_t (net/sock/udp.h): UDP sock * * @ref sock_dtls_t (net/sock/dtls.h): DTLS sock * * Note that there might be no relation between the different `sock` types. * So casting e.g. `sock_ip_t` to `sock_udp_t` might not be as straight forward, * as you think depending on the networking architecture. * * How To Use * ========== * * A RIOT application uses the functions provided by one or more of the * `sock` type headers (for example @ref sock_udp_t), regardless of the * network stack it uses. * The network stack used under the bonnet is specified by including the * appropriate module (for example `USEMODULE += gnrc_sock_udp` for * [GNRC's](@ref net_gnrc) version of this API). * * This allows for network stack agnostic code on the application layer. * The application code to establish a connection is always the same, allowing * the network stack underneath to be switched simply by changing the * `USEMODULE` definitions in the application's Makefile. * * The actual code very much depends on the used `sock` type. Please refer to * their documentation for specific examples. * * Implementor Notes * ================= * ### Type definition * For simplicity and modularity this API doesn't put any restriction on the * actual implementation of the type. For example, one implementation might * choose to have all `sock` types having a common base class or use the raw IP * `sock` type to send e.g. UDP packets, while others will keep them * completely separate from each other. * * @author Alexander Aring * @author Simon Brummer * @author Cenk Gündoğan * @author Peter Kietzmann * @author Martine Lenders * @author Kaspar Schleiser * * @{ * * @file * @brief Common sock API definitions * * @author Martine Lenders * @author Kaspar Schleiser */ #ifndef NET_SOCK_H #define NET_SOCK_H #include #include #include "iolist.h" #ifdef __cplusplus extern "C" { #endif #if defined(DOXYGEN) /** * @name Compile flags * @brief Flags to (de)activate certain functionalities * @{ */ #define SOCK_HAS_IPV6 /**< activate IPv6 support */ /** * @brief activate asynchronous event functionality * * @see @ref net_sock_async */ #define SOCK_HAS_ASYNC /** * @brief Activate context for asynchronous events * * @see @ref net_sock_async * * This can be used if an asynchronous mechanism needs context (e.g. an * event instance for an event loop). An event handling implementation then * needs to provide a `sock_async_ctx.h` header file containing a definition * for the `sock_async_ctx_t` type. */ #define SOCK_HAS_ASYNC_CTX /** @} */ #endif /** * @name Sock flags * @brief Common flags for @ref net_sock * @anchor net_sock_flags * @{ */ #define SOCK_FLAGS_REUSE_EP (0x0001) /**< allow to reuse end point on bind */ #define SOCK_FLAGS_CONNECT_REMOTE (0x0002) /**< restrict responses to remote address */ /** @} */ /** * @brief Special netif ID for "any interface" * @todo Use an equivalent definition from PR #5511 */ #define SOCK_ADDR_ANY_NETIF (0) /** * @brief Address to bind to any IPv4 address */ #define SOCK_IPV4_EP_ANY { .family = AF_INET, \ .netif = SOCK_ADDR_ANY_NETIF } #if defined(SOCK_HAS_IPV6) || defined(DOXYGEN) /** * @brief Address to bind to any IPv6 address */ #define SOCK_IPV6_EP_ANY { .family = AF_INET6, \ .netif = SOCK_ADDR_ANY_NETIF } #endif /** * @brief Special value meaning "wait forever" (don't timeout) */ #define SOCK_NO_TIMEOUT (UINT32_MAX) /** * @brief Abstract IP end point and end point for a raw IP sock object */ typedef struct { /** * @brief family of sock_ip_ep_t::addr * * @see @ref net_af */ int family; union { #ifdef SOCK_HAS_IPV6 /** * @brief IPv6 address mode * * @note only available if @ref SOCK_HAS_IPV6 is defined. */ uint8_t ipv6[16]; #endif uint8_t ipv4[4]; /**< IPv4 address mode */ uint32_t ipv4_u32; /**< IPv4 address *in network byte order* */ } addr; /**< address */ /** * @brief stack-specific network interface ID * * @todo port to common network interface identifiers in PR #5511. * * Use @ref SOCK_ADDR_ANY_NETIF for any interface. * For reception this is the local interface the message came over, * for transmission, this is the local interface the message should be send * over */ uint16_t netif; } sock_ip_ep_t; /** * @brief Common IP-based transport layer end point */ struct _sock_tl_ep { /** * @brief family of sock_ip_ep_t::addr * * @see @ref net_af */ int family; union { #ifdef SOCK_HAS_IPV6 /** * @brief IPv6 address mode * * @note only available if @ref SOCK_HAS_IPV6 is defined. */ uint8_t ipv6[16]; #endif uint8_t ipv4[4]; /**< IPv4 address mode */ uint32_t ipv4_u32; /**< IPv4 address *in network byte order* */ } addr; /**< address */ /** * @brief stack-specific network interface ID * * @todo port to common network interface identifiers in PR #5511. * * Use @ref SOCK_ADDR_ANY_NETIF for any interface. * For reception this is the local interface the message came over, * for transmission, this is the local interface the message should be send * over */ uint16_t netif; uint16_t port; /**< transport layer port (in host byte order) */ }; /** * @brief Flags used to request auxiliary data */ enum { /** * @brief Flag to request the local address/endpoint * * @note Select module `sock_aux_local` and a compatible network stack * to use this * * This is the address/endpoint the packet/datagram/segment was received on. * This flag will be cleared if the network stack stored the local * address/endpoint as requested, otherwise the bit remains set. * * Depending on the family of the socket, the timestamp will be stored in * @ref sock_udp_aux_rx_t::local, @ref sock_ip_aux_rx_t::local, or in * @ref sock_dtls_aux_rx_t::local. */ SOCK_AUX_GET_LOCAL = (1LU << 0), /** * @brief Flag to request the time stamp of transmission / reception * * @note Select module `sock_aux_timestamp` and a compatible network * stack to use this * * Unless otherwise noted, the time stamp is the current system time in * nanoseconds on which the start of frame delimiter or preamble was * sent / received. * * Set this flag in the auxiliary data structure prior to the call of * @ref sock_udp_recv_aux / @ref sock_udp_send_aux / @ref sock_ip_recv_aux * / etc. to request the time stamp of reception / transmission. This flag * will be cleared if the timestamp was stored, otherwise it remains set. * * Depending on the family of the socket, the timestamp will be stored in * for reception in @ref sock_udp_aux_rx_t::timestamp, * @ref sock_ip_aux_rx_t::timestamp, or @ref sock_dtls_aux_rx_t::timestamp. * For transmission it will be stored in @ref sock_udp_aux_tx_t::timestamp, * @ref sock_ip_aux_tx_t::timestamp, or @ref sock_dtls_aux_tx_t::timestamp. */ SOCK_AUX_GET_TIMESTAMP = (1LU << 1), /** * @brief Flag to request the RSSI value of received frame * * @note Select module `sock_aux_rssi` and a compatible network stack to * use this * * Set this flag in the auxiliary data structure prior to the call of * @ref sock_udp_recv_aux / @ref sock_ip_recv_aux / etc. to request the * RSSI value of a received frame. This flag will be cleared if the * timestamp was stored, otherwise it remains set. * * Depending on the family of the socket, the RSSI value will be stored in * @ref sock_udp_aux_rx_t::rssi, @ref sock_ip_aux_rx_t::rssi, or * @ref sock_dtls_aux_rx_t::rssi. */ SOCK_AUX_GET_RSSI = (1LU << 2), /** * @brief Flag to set the local address/endpoint * * @note Select module `sock_aux_local` and a compatible network stack * to use this * * This is the address/endpoint the packet/datagram/segment will be sent from. * This flag will be cleared if the network stack stored the local * address/endpoint as requested, otherwise the bit remains set. * * Depending on the family of the socket, the timestamp will be stored in * @ref sock_udp_aux_tx_t::local, @ref sock_ip_aux_tx_t::local, or in * @ref sock_dtls_aux_tx_t::local. */ SOCK_AUX_SET_LOCAL = (1LU << 3), /** * @brief Flag to request the TTL value of received frame * * @note Select module `sock_aux_ttl` and a compatible network stack to * use this * * Set this flag in the auxiliary data structure prior to the call of * @ref sock_udp_recv_aux / @ref sock_ip_recv_aux / etc. to request the * TTL value of a received frame. This flag will be cleared if the * time to live was stored, otherwise it remains set. * * Depending on the family of the socket, the TTL value will be stored in * @ref sock_udp_aux_rx_t::ttl or @ref sock_dtls_aux_rx_t::ttl. */ SOCK_AUX_GET_TTL = (1LU << 4), }; /** * @brief Type holding the flags used to request specific auxiliary data * * This is a bitmask of `SOCK_AUX_GET_...`, e.g. if the mask contains * @ref SOCK_AUX_GET_LOCAL, the local address/endpoint is requested * * @details The underlying type can be changed without further notice, if more * flags are needed. Thus, only the `typedef`ed type should be used * to store the flags. */ typedef uint8_t sock_aux_flags_t; #ifdef __cplusplus } #endif #endif /* NET_SOCK_H */ /** @} */