/* * Copyright (c) 2015-2020 Ken Bannister. All rights reserved. * 2019 Freie Universität Berlin * * This file is subject to the terms and conditions of the GNU Lesser * General Public License v2.1. See the file LICENSE in the top level * directory for more details. */ /** * @ingroup net_gcoap * @{ * * @file * @brief GNRC's implementation of CoAP protocol * * Runs a thread (_pid) to manage request/response messaging. * * @author Ken Bannister * @author Hauke Petersen */ #include #include #include #include #include "assert.h" #include "net/coap.h" #include "net/gcoap.h" #include "net/gcoap/forward_proxy.h" #include "net/nanocoap/cache.h" #include "net/sock/async/event.h" #include "net/sock/util.h" #include "mutex.h" #include "random.h" #include "thread.h" #include "ztimer.h" #if IS_USED(MODULE_GCOAP_DTLS) #include "net/sock/dtls.h" #include "net/credman.h" #include "net/dsm.h" #endif #define ENABLE_DEBUG 0 #include "debug.h" /* Sentinel value indicating that no immediate response is required */ #define NO_IMMEDIATE_REPLY (-1) /* End of the range to pick a random timeout */ #define TIMEOUT_RANGE_END (CONFIG_COAP_ACK_TIMEOUT_MS * CONFIG_COAP_RANDOM_FACTOR_1000 / 1000) /* Internal functions */ static void *_event_loop(void *arg); static void _on_sock_udp_evt(sock_udp_t *sock, sock_async_flags_t type, void *arg); static void _process_coap_pdu(gcoap_socket_t *sock, sock_udp_ep_t *remote, sock_udp_aux_tx_t *aux, uint8_t *buf, size_t len, bool truncated); static int _tl_init_coap_socket(gcoap_socket_t *sock, gcoap_socket_type_t type); static ssize_t _tl_send(gcoap_socket_t *sock, const void *data, size_t len, const sock_udp_ep_t *remote, sock_udp_aux_tx_t *aux); static ssize_t _tl_authenticate(gcoap_socket_t *sock, const sock_udp_ep_t *remote, uint32_t timeout); static ssize_t _well_known_core_handler(coap_pkt_t* pdu, uint8_t *buf, size_t len, coap_request_ctx_t *ctx); static void _cease_retransmission(gcoap_request_memo_t *memo); static size_t _handle_req(gcoap_socket_t *sock, coap_pkt_t *pdu, uint8_t *buf, size_t len, sock_udp_ep_t *remote); static void _expire_request(gcoap_request_memo_t *memo); static void _find_req_memo(gcoap_request_memo_t **memo_ptr, coap_pkt_t *pdu, const sock_udp_ep_t *remote, bool by_mid); static int _find_resource(gcoap_socket_type_t tl_type, coap_pkt_t *pdu, const coap_resource_t **resource_ptr, gcoap_listener_t **listener_ptr); static int _find_observer(sock_udp_ep_t **observer, sock_udp_ep_t *remote); static int _find_obs_memo(gcoap_observe_memo_t **memo, sock_udp_ep_t *remote, coap_pkt_t *pdu); static void _find_obs_memo_resource(gcoap_observe_memo_t **memo, const coap_resource_t *resource); static nanocoap_cache_entry_t *_cache_lookup_memo(gcoap_request_memo_t *cache_key); static void _cache_process(gcoap_request_memo_t *memo, coap_pkt_t *pdu); static ssize_t _cache_build_response(nanocoap_cache_entry_t *ce, coap_pkt_t *pdu, uint8_t *buf, size_t len); static void _receive_from_cache_cb(void *arg); static int _request_matcher_default(gcoap_listener_t *listener, const coap_resource_t **resource, coap_pkt_t *pdu); #if IS_USED(MODULE_GCOAP_DTLS) static void _on_sock_dtls_evt(sock_dtls_t *sock, sock_async_flags_t type, void *arg); static void _dtls_free_up_session(void *arg); #endif /* Internal variables */ const coap_resource_t _default_resources[] = { { "/.well-known/core", COAP_GET, _well_known_core_handler, NULL }, }; static gcoap_listener_t _default_listener = { &_default_resources[0], ARRAY_SIZE(_default_resources), GCOAP_SOCKET_TYPE_UNDEF, NULL, NULL, _request_matcher_default }; /* Container for the state of gcoap itself */ typedef struct { mutex_t lock; /* Shares state attributes safely */ gcoap_listener_t *listeners; /* List of registered listeners */ gcoap_request_memo_t open_reqs[CONFIG_GCOAP_REQ_WAITING_MAX]; /* Storage for open requests; if first byte of an entry is zero, the entry is available */ atomic_uint next_message_id; /* Next message ID to use */ sock_udp_ep_t observers[CONFIG_GCOAP_OBS_CLIENTS_MAX]; /* Observe clients; allows reuse for observe memos */ gcoap_observe_memo_t observe_memos[CONFIG_GCOAP_OBS_REGISTRATIONS_MAX]; /* Observed resource registrations */ uint8_t resend_bufs[CONFIG_GCOAP_RESEND_BUFS_MAX][CONFIG_GCOAP_PDU_BUF_SIZE]; /* Buffers for PDU for request resends; if first byte of an entry is zero, the entry is available */ } gcoap_state_t; static gcoap_state_t _coap_state = { .listeners = &_default_listener, }; static kernel_pid_t _pid = KERNEL_PID_UNDEF; static char _msg_stack[GCOAP_STACK_SIZE]; static event_queue_t _queue; static uint8_t _listen_buf[CONFIG_GCOAP_PDU_BUF_SIZE]; static sock_udp_t _sock_udp; static event_callback_t _receive_from_cache; #if IS_USED(MODULE_GCOAP_DTLS) /* DTLS variables and definitions */ #define SOCK_DTLS_CLIENT_TAG (2) static sock_udp_t _sock_dtls_base; static sock_dtls_t _sock_dtls; static kernel_pid_t _auth_waiting_thread; static event_timeout_t _dtls_session_free_up_tmout; static event_callback_t _dtls_session_free_up_tmout_cb; #endif /* Event loop for gcoap _pid thread. */ static void *_event_loop(void *arg) { (void)arg; sock_udp_ep_t local; memset(&local, 0, sizeof(sock_udp_ep_t)); /* FIXME: Once the problems with IPv4/IPv6 dual stack use in RIOT are fixed, adapt these lines * (and e.g. use AF_UNSPEC) */ #ifdef SOCK_HAS_IPV4 local.family = AF_INET; #endif #ifdef SOCK_HAS_IPV6 local.family = AF_INET6; #endif local.netif = SOCK_ADDR_ANY_NETIF; local.port = CONFIG_GCOAP_PORT; int res = sock_udp_create(&_sock_udp, &local, NULL, 0); if (res < 0) { DEBUG("gcoap: cannot create sock: %d\n", res); return 0; } event_queue_init(&_queue); sock_udp_event_init(&_sock_udp, &_queue, _on_sock_udp_evt, NULL); if (IS_USED(MODULE_GCOAP_DTLS)) { #if IS_USED(MODULE_GCOAP_DTLS) local.port = CONFIG_GCOAPS_PORT; if (sock_udp_create(&_sock_dtls_base, &local, NULL, 0)) { DEBUG("gcoap: error creating DTLS transport sock\n"); return 0; } if (sock_dtls_create(&_sock_dtls, &_sock_dtls_base, CREDMAN_TAG_EMPTY, SOCK_DTLS_1_2, SOCK_DTLS_SERVER) < 0) { DEBUG("gcoap: error creating DTLS sock\n"); sock_udp_close(&_sock_dtls_base); return 0; } sock_dtls_event_init(&_sock_dtls, &_queue, _on_sock_dtls_evt, NULL); #endif } event_loop(&_queue); return 0; } #if IS_USED(MODULE_GCOAP_DTLS) /* Handles DTLS socket events from the event queue */ static void _on_sock_dtls_evt(sock_dtls_t *sock, sock_async_flags_t type, void *arg) { (void)arg; gcoap_socket_t socket = { .type = GCOAP_SOCKET_TYPE_DTLS, .socket.dtls = sock}; if (type & SOCK_ASYNC_CONN_RECV) { ssize_t res = sock_dtls_recv(sock, &socket.ctx_dtls_session, _listen_buf, sizeof(_listen_buf), CONFIG_GCOAP_DTLS_HANDSHAKE_TIMEOUT_MSEC); if (res != -SOCK_DTLS_HANDSHAKE) { DEBUG("gcoap: could not establish DTLS session: %zd\n", res); sock_dtls_session_destroy(sock, &socket.ctx_dtls_session); return; } dsm_state_t prev_state = dsm_store(sock, &socket.ctx_dtls_session, SESSION_STATE_ESTABLISHED, false); /* If session is already stored and the state was SESSION_STATE_HANDSHAKE before, the handshake has been initiated internally by a gcoap client request and another thread is waiting for the handshake. Send message to the waiting thread to inform about established session */ if (prev_state == SESSION_STATE_HANDSHAKE) { msg_t msg = { .type = DTLS_EVENT_CONNECTED }; msg_send(&msg, _auth_waiting_thread); } else if (prev_state == NO_SPACE) { /* No space in session management. Should not happen. If it occurs, we lost track of sessions */ DEBUG("gcoap: no space in session management. We lost track of sessions!"); sock_dtls_session_destroy(sock, &socket.ctx_dtls_session); } /* If not enough session slots left: set timeout to free up session */ uint8_t minimum_free = CONFIG_GCOAP_DTLS_MINIMUM_AVAILABLE_SESSIONS; if (dsm_get_num_available_slots() < minimum_free) { uint32_t timeout = CONFIG_GCOAP_DTLS_MINIMUM_AVAILABLE_SESSIONS_TIMEOUT_MSEC; event_callback_init(&_dtls_session_free_up_tmout_cb, _dtls_free_up_session, NULL); event_timeout_ztimer_init(&_dtls_session_free_up_tmout, ZTIMER_MSEC, &_queue, &_dtls_session_free_up_tmout_cb.super); event_timeout_set(&_dtls_session_free_up_tmout, timeout); } } if (type & SOCK_ASYNC_CONN_FIN) { if (sock_dtls_get_event_session(sock, &socket.ctx_dtls_session)) { /* Session is already destroyed, only remove it from dsm */ dsm_remove(sock, &socket.ctx_dtls_session); } else { puts("gcoap: A session was closed, but the corresponding session " \ "could not be retrieved from the socket!"); return; } sock_udp_ep_t ep; sock_dtls_session_get_udp_ep(&socket.ctx_dtls_session, &ep); /* Remove all memos of the concerned session. TODO: oberservable memos! */ for (int i = 0; i < CONFIG_GCOAP_REQ_WAITING_MAX; i++) { if (_coap_state.open_reqs[i].state == GCOAP_MEMO_UNUSED) { continue; } gcoap_request_memo_t *memo = &_coap_state.open_reqs[i]; if (sock_udp_ep_equal(&memo->remote_ep, &ep)) { _expire_request(memo); event_timeout_clear(&memo->resp_evt_tmout); } } } if (type & SOCK_ASYNC_MSG_RECV) { ssize_t res = sock_dtls_recv(sock, &socket.ctx_dtls_session, _listen_buf, sizeof(_listen_buf), 0); if (res <= 0) { DEBUG("gcoap: DTLS recv failure: %d\n", (int)res); return; } sock_udp_ep_t ep; sock_dtls_session_get_udp_ep(&socket.ctx_dtls_session, &ep); /* Truncated DTLS messages would already have gotten lost at verification */ _process_coap_pdu(&socket, &ep, NULL, _listen_buf, res, false); } } /* Timeout function to free up a session when too many session slots are occupied */ static void _dtls_free_up_session(void *arg) { (void)arg; sock_dtls_session_t session; uint8_t minimum_free = CONFIG_GCOAP_DTLS_MINIMUM_AVAILABLE_SESSIONS; if (dsm_get_num_available_slots() < minimum_free) { if (dsm_get_least_recently_used_session(&_sock_dtls, &session) != -1) { /* free up session */ dsm_remove(&_sock_dtls, &session); sock_dtls_session_destroy(&_sock_dtls, &session); } } } #endif /* MODULE_GCOAP_DTLS */ /* Handles UDP socket events from the event queue. */ static void _on_sock_udp_evt(sock_udp_t *sock, sock_async_flags_t type, void *arg) { (void)arg; sock_udp_ep_t remote; if (type & SOCK_ASYNC_MSG_RECV) { void *stackbuf; void *buf_ctx = NULL; bool truncated = false; size_t cursor = 0; sock_udp_aux_rx_t aux_in = { .flags = SOCK_AUX_GET_LOCAL, }; /* The zero-copy _buf API is not used to its full potential here -- we * still copy out data in what is a manual version of sock_udp_recv, * but this gives the direly needed overflow information. * * A version that actually doesn't copy would vastly change the way * gcoap passes the buffer to be read from and written into to the * handler. Also, given that neither nanocoap nor the handler expects * to gather scattered data, it'd need to rely on the data coming in a * single slice (but that may be a realistic assumption). */ while (true) { ssize_t res = sock_udp_recv_buf_aux(sock, &stackbuf, &buf_ctx, 0, &remote, &aux_in); if (res < 0) { DEBUG("gcoap: udp recv failure: %d\n", (int)res); return; } if (res == 0) { break; } if (cursor + res > sizeof(_listen_buf)) { res = sizeof(_listen_buf) - cursor; truncated = true; } memcpy(&_listen_buf[cursor], stackbuf, res); cursor += res; } /* make sure we reply with the same address that the request was * destined for -- except in the multicast case */ sock_udp_aux_tx_t *aux_out_ptr; sock_udp_aux_tx_t aux_out = { .flags = SOCK_AUX_SET_LOCAL, .local = aux_in.local, }; if (sock_udp_ep_is_multicast(&aux_in.local)) { /* This eventually gets passed to sock_udp_send_aux, where NULL * simply does not set any flags */ aux_out_ptr = NULL; } else { aux_out_ptr = &aux_out; } gcoap_socket_t socket = { .type = GCOAP_SOCKET_TYPE_UDP, .socket.udp = sock, }; _process_coap_pdu(&socket, &remote, aux_out_ptr, _listen_buf, cursor, truncated); } } /* Processes and evaluates the coap pdu */ static void _process_coap_pdu(gcoap_socket_t *sock, sock_udp_ep_t *remote, sock_udp_aux_tx_t *aux, uint8_t *buf, size_t len, bool truncated) { coap_pkt_t pdu; gcoap_request_memo_t *memo = NULL; /* Code paths that necessitate a response on the message layer can set a * response type here (COAP_TYPE_RST or COAP_TYPE_ACK). If set, at the end * of the function there will be * * that value will be put in the code field, * * token length cleared, * * code set to EMPTY, and * * the message is returned with the rest of its header intact. */ int8_t messagelayer_emptyresponse_type = NO_IMMEDIATE_REPLY; ssize_t res = coap_parse(&pdu, buf, len); if (res < 0) { DEBUG("gcoap: parse failure: %d\n", (int)res); /* If a response, can't clear memo, but it will timeout later. * * There are *some* error cases in which we could continue (eg. all * sorts of "packet ends mid-options" in truncated cases, and maybe * also when the maximum option count is exceeded to at least respond * with Bad Request), but these would likely require incompatible * changes to nanocoap. */ return; } if (coap_get_type(&pdu) == COAP_TYPE_RST) { DEBUG("gcoap: received RST, expiring potentially existing memo\n"); _find_req_memo(&memo, &pdu, remote, true); if (memo) { event_timeout_clear(&memo->resp_evt_tmout); _expire_request(memo); } } /* validate class and type for incoming */ switch (coap_get_code_class(&pdu)) { /* incoming request or empty */ case COAP_CLASS_REQ: if (coap_get_code_raw(&pdu) == COAP_CODE_EMPTY) { /* ping request */ if (coap_get_type(&pdu) == COAP_TYPE_CON) { messagelayer_emptyresponse_type = COAP_TYPE_RST; DEBUG("gcoap: Answering empty CON request with RST\n"); } else if (coap_get_type(&pdu) == COAP_TYPE_ACK) { _find_req_memo(&memo, &pdu, remote, true); if ((memo != NULL) && (memo->send_limit != GCOAP_SEND_LIMIT_NON)) { DEBUG("gcoap: empty ACK processed, stopping retransmissions\n"); _cease_retransmission(memo); } else { DEBUG("gcoap: empty ACK matches no known CON, ignoring\n"); } } else { DEBUG("gcoap: Ignoring empty non-CON request\n"); } } /* normal request */ else if (coap_get_type(&pdu) == COAP_TYPE_NON || coap_get_type(&pdu) == COAP_TYPE_CON) { size_t pdu_len; if (truncated) { /* TBD: Set a Size1 */ pdu_len = gcoap_response(&pdu, _listen_buf, sizeof(_listen_buf), COAP_CODE_REQUEST_ENTITY_TOO_LARGE); } else { pdu_len = _handle_req(sock, &pdu, _listen_buf, sizeof(_listen_buf), remote); } if (pdu_len > 0) { ssize_t bytes = _tl_send(sock, _listen_buf, pdu_len, remote, aux); if (bytes <= 0) { DEBUG("gcoap: send response failed: %d\n", (int)bytes); } } } else { DEBUG("gcoap: illegal request type: %u\n", coap_get_type(&pdu)); } break; /* incoming response */ case COAP_CLASS_SUCCESS: case COAP_CLASS_CLIENT_FAILURE: case COAP_CLASS_SERVER_FAILURE: _find_req_memo(&memo, &pdu, remote, false); if (memo) { switch (coap_get_type(&pdu)) { case COAP_TYPE_CON: messagelayer_emptyresponse_type = COAP_TYPE_ACK; DEBUG("gcoap: Answering CON response with ACK\n"); /* fall through */ case COAP_TYPE_NON: case COAP_TYPE_ACK: if (memo->resp_evt_tmout.queue) { event_timeout_clear(&memo->resp_evt_tmout); } memo->state = truncated ? GCOAP_MEMO_RESP_TRUNC : GCOAP_MEMO_RESP; if (IS_USED(MODULE_NANOCOAP_CACHE)) { nanocoap_cache_entry_t *ce = NULL; if ((pdu.hdr->code == COAP_CODE_VALID) && (ce = _cache_lookup_memo(memo))) { /* update max_age from response and send cached response */ uint32_t max_age = 60; coap_opt_get_uint(&pdu, COAP_OPT_MAX_AGE, &max_age); ce->max_age = ztimer_now(ZTIMER_SEC) + max_age; /* copy all options and possible payload from the cached response * to the new response */ assert((uint8_t *)pdu.hdr == &_listen_buf[0]); if (_cache_build_response(ce, &pdu, _listen_buf, sizeof(_listen_buf)) < 0) { memo->state = GCOAP_MEMO_ERR; } if (ce->truncated) { memo->state = GCOAP_MEMO_RESP_TRUNC; } } /* TODO: resend request if VALID but no cache entry? */ else if ((pdu.hdr->code != COAP_CODE_VALID)) { _cache_process(memo, &pdu); } } if (memo->resp_handler) { memo->resp_handler(memo, &pdu, remote); } if (memo->send_limit >= 0) { /* if confirmable */ *memo->msg.data.pdu_buf = 0; /* clear resend PDU buffer */ } memo->state = GCOAP_MEMO_UNUSED; break; default: DEBUG("gcoap: illegal response type: %u\n", coap_get_type(&pdu)); break; } } else { DEBUG("gcoap: msg not found for ID: %u\n", coap_get_id(&pdu)); if (coap_get_type(&pdu) == COAP_TYPE_CON) { /* we might run into this if an ACK to a sender got lost * see https://datatracker.ietf.org/doc/html/rfc7252#section-5.3.2 */ messagelayer_emptyresponse_type = COAP_TYPE_RST; DEBUG("gcoap: Answering unknown CON response with RST to " "shut up sender\n"); } } break; default: DEBUG("gcoap: illegal code class: %u\n", coap_get_code_class(&pdu)); } if (messagelayer_emptyresponse_type != NO_IMMEDIATE_REPLY) { coap_hdr_set_type(pdu.hdr, (uint8_t)messagelayer_emptyresponse_type); coap_hdr_set_code(pdu.hdr, COAP_CODE_EMPTY); /* Set the token length to 0, preserving the CoAP version as it was and * the empty message type that was just set. * * FIXME: Introduce an internal function to set or truncate the token * */ pdu.hdr->ver_t_tkl &= 0xf0; ssize_t bytes = _tl_send(sock, buf, sizeof(coap_hdr_t), remote, aux); if (bytes <= 0) { DEBUG("gcoap: empty response failed: %d\n", (int)bytes); } } } /* Handles response timeout for a request; resend confirmable if needed. */ static void _on_resp_timeout(void *arg) { gcoap_request_memo_t *memo = (gcoap_request_memo_t *)arg; /* no retries remaining */ if ((memo->send_limit == GCOAP_SEND_LIMIT_NON) || (memo->send_limit == 0)) { _expire_request(memo); } /* reduce retries remaining, double timeout and resend */ else { memo->send_limit--; #ifdef CONFIG_GCOAP_NO_RETRANS_BACKOFF unsigned i = 0; #else unsigned i = CONFIG_COAP_MAX_RETRANSMIT - memo->send_limit; #endif uint32_t timeout = (uint32_t)CONFIG_COAP_ACK_TIMEOUT_MS << i; #if CONFIG_COAP_RANDOM_FACTOR_1000 > 1000 uint32_t end = (uint32_t)TIMEOUT_RANGE_END << i; timeout = random_uint32_range(timeout, end); #endif event_timeout_set(&memo->resp_evt_tmout, timeout); if (memo->state == GCOAP_MEMO_WAIT) { /* See _cease_retransmission: Still going through the timeouts and * rescheduling, but not actually sending any more */ return; } ssize_t bytes = _tl_send(&memo->socket, memo->msg.data.pdu_buf, memo->msg.data.pdu_len, &memo->remote_ep, NULL); if (bytes <= 0) { DEBUG("gcoap: sock resend failed: %d\n", (int)bytes); _expire_request(memo); } } } /* Change the retransmission of the memo such that no requests are sent any more. * * This is used in response to an empty ACK. * * The current implementation does not touch the timers, but merely sets the * memo's state to GCOAP_MEMO_WAIT. This approach needs less complex code at * the cost of the remaining `send_limit` timers firing and some memory not * being freed until the actual response arrives. * * An alternative implementation would stop the timeouts, and either free the * whole memo if it has no response handler, or calculate the remaining timeout * from `send_limit` to set a final timeout then. In that case, it might also * free the gcoap_resend_t data and move it back into hdr_buf (along with a * change in the discriminator for that). (That's not an option with the * current design because the discriminator is the send_limit field, which is * still used to count down). * * @param[inout] memo The memo indicating the pending request * * @pre The @p memo is GCOAP_MEMO_RETRANSMIT or GCOAP_MEMO_WAIT, and its * send_limit is not GCOAP_SEND_LIMIT_NON. */ static void _cease_retransmission(gcoap_request_memo_t *memo) { memo->state = GCOAP_MEMO_WAIT; /* there is also no response handler to wait for => expire memo */ if (memo->resp_handler == NULL) { event_timeout_clear(&memo->resp_evt_tmout); _expire_request(memo); } } /* * Main request handler: generates response PDU in the provided buffer. * * Caller must finish the PDU and send it. * * return length of response pdu, or < 0 if can't handle */ static size_t _handle_req(gcoap_socket_t *sock, coap_pkt_t *pdu, uint8_t *buf, size_t len, sock_udp_ep_t *remote) { const coap_resource_t *resource = NULL; gcoap_listener_t *listener = NULL; sock_udp_ep_t *observer = NULL; gcoap_observe_memo_t *memo = NULL; gcoap_observe_memo_t *resource_memo = NULL; switch (_find_resource(sock->type, pdu, &resource, &listener)) { case GCOAP_RESOURCE_WRONG_METHOD: return gcoap_response(pdu, buf, len, COAP_CODE_METHOD_NOT_ALLOWED); case GCOAP_RESOURCE_NO_PATH: return gcoap_response(pdu, buf, len, COAP_CODE_PATH_NOT_FOUND); case GCOAP_RESOURCE_FOUND: /* find observe registration for resource */ _find_obs_memo_resource(&resource_memo, resource); break; case GCOAP_RESOURCE_ERROR: default: return gcoap_response(pdu, buf, len, COAP_CODE_INTERNAL_SERVER_ERROR); break; } if (coap_get_observe(pdu) == COAP_OBS_REGISTER) { /* lookup remote+token */ int empty_slot = _find_obs_memo(&memo, remote, pdu); /* validate re-registration request */ if (resource_memo != NULL) { if (memo != NULL) { if (memo != resource_memo) { /* reject token already used for a different resource */ memo = NULL; coap_clear_observe(pdu); DEBUG("gcoap: can't change resource for token\n"); } /* otherwise OK to re-register resource with the same token */ } else if ((sock->type == resource_memo->socket.type) && sock_udp_ep_equal(remote, resource_memo->observer)) { /* accept new token for resource */ memo = resource_memo; } } /* initialize new registration request */ if ((memo == NULL) && coap_has_observe(pdu)) { /* verify resource not already registered (for another endpoint) */ if ((empty_slot >= 0) && (resource_memo == NULL)) { int obs_slot = _find_observer(&observer, remote); /* cache new observer */ if (observer == NULL) { if (obs_slot >= 0) { observer = &_coap_state.observers[obs_slot]; memcpy(observer, remote, sizeof(sock_udp_ep_t)); } else { DEBUG("gcoap: can't register observer\n"); } } if (observer != NULL) { memo = &_coap_state.observe_memos[empty_slot]; memo->observer = observer; } } if (memo == NULL) { coap_clear_observe(pdu); DEBUG("gcoap: can't register observe memo\n"); } } /* finish registration */ if (memo != NULL) { /* resource may be assigned here if it is not already registered */ memo->resource = resource; memo->token_len = coap_get_token_len(pdu); memo->socket = *sock; if (memo->token_len) { memcpy(&memo->token[0], coap_get_token(pdu), memo->token_len); } DEBUG("gcoap: Registered observer for: %s\n", memo->resource->path); } } else if (coap_get_observe(pdu) == COAP_OBS_DEREGISTER) { _find_obs_memo(&memo, remote, pdu); /* clear memo, and clear observer if no other memos */ if (memo != NULL) { DEBUG("gcoap: Deregistering observer for: %s\n", memo->resource->path); memo->observer = NULL; memo = NULL; _find_obs_memo(&memo, remote, NULL); if (memo == NULL) { _find_observer(&observer, remote); if (observer != NULL) { observer->family = AF_UNSPEC; } } } coap_clear_observe(pdu); } else if (coap_has_observe(pdu)) { /* bogus request; don't respond */ DEBUG("gcoap: Observe value unexpected: %" PRIu32 "\n", coap_get_observe(pdu)); return -1; } ssize_t pdu_len; coap_request_ctx_t ctx = { .resource = resource, .tl_type = (uint32_t)sock->type, .remote = remote, }; pdu_len = resource->handler(pdu, buf, len, &ctx); if (pdu_len < 0) { pdu_len = gcoap_response(pdu, buf, len, COAP_CODE_INTERNAL_SERVER_ERROR); } return pdu_len; } static int _request_matcher_default(gcoap_listener_t *listener, const coap_resource_t **resource, coap_pkt_t *pdu) { uint8_t uri[CONFIG_NANOCOAP_URI_MAX]; int ret = GCOAP_RESOURCE_NO_PATH; if (coap_get_uri_path(pdu, uri) <= 0) { /* The Uri-Path options are longer than * CONFIG_NANOCOAP_URI_MAX, and thus do not match anything * that could be found by this handler. */ return GCOAP_RESOURCE_NO_PATH; } coap_method_flags_t method_flag = coap_method2flag( coap_get_code_detail(pdu)); for (size_t i = 0; i < listener->resources_len; i++) { *resource = &listener->resources[i]; int res = coap_match_path(*resource, uri); /* URI mismatch */ if (res != 0) { continue; } /* potential match, check for method */ if (! ((*resource)->methods & method_flag)) { /* record wrong method error for next iteration, in case * another resource with the same URI and correct method * exists */ ret = GCOAP_RESOURCE_WRONG_METHOD; continue; } else { return GCOAP_RESOURCE_FOUND; } } return ret; } /* * Searches listener registrations for the resource matching the path in a PDU. * * param[in] tl_type -- transport the request for the resource came over. * param[in] pdu -- the PDU to check the resource for * param[out] resource_ptr -- found resource * param[out] listener_ptr -- listener for found resource * return `GCOAP_RESOURCE_FOUND` if the resource was found, * `GCOAP_RESOURCE_WRONG_METHOD` if a resource was found but the method * code didn't match and `GCOAP_RESOURCE_NO_PATH` if no matching * resource was found. */ static int _find_resource(gcoap_socket_type_t tl_type, coap_pkt_t *pdu, const coap_resource_t **resource_ptr, gcoap_listener_t **listener_ptr) { int ret = GCOAP_RESOURCE_NO_PATH; /* Find path for CoAP msg among listener resources and execute callback. */ gcoap_listener_t *listener = _coap_state.listeners; while (listener) { const coap_resource_t *resource; int res; /* only makes sense to check if non-UDP transports are supported, * so check if module is used first. */ if (IS_USED(MODULE_GCOAP_DTLS) && (listener->tl_type != GCOAP_SOCKET_TYPE_UNDEF) && !(listener->tl_type & tl_type)) { listener = listener->next; continue; } res = listener->request_matcher(listener, &resource, pdu); /* check next resource on mismatch */ if (res == GCOAP_RESOURCE_NO_PATH) { listener = listener->next; continue; } /* found a resource, but methods do not match */ else if (res == GCOAP_RESOURCE_WRONG_METHOD) { ret = GCOAP_RESOURCE_WRONG_METHOD; listener = listener->next; continue; } /* found a suitable resource */ else if (res == GCOAP_RESOURCE_FOUND) { *resource_ptr = resource; *listener_ptr = listener; return GCOAP_RESOURCE_FOUND; } /* res is probably GCOAP_RESOURCE_ERROR or some other * unhandled error */ else { return GCOAP_RESOURCE_ERROR; } } return ret; } /* * Finds the memo for an outstanding request within the _coap_state.open_reqs * array. Matches on remote endpoint and token. * * memo_ptr[out] -- Registered request memo, or NULL if not found * src_pdu[in] -- PDU for token to match * remote[in] -- Remote endpoint to match * by_mid[in] -- true if matches are to be done based on Message ID, otherwise they are done by * token */ static void _find_req_memo(gcoap_request_memo_t **memo_ptr, coap_pkt_t *src_pdu, const sock_udp_ep_t *remote, bool by_mid) { *memo_ptr = NULL; /* no need to initialize struct; we only care about buffer contents below */ coap_pkt_t memo_pdu_data; coap_pkt_t *memo_pdu = &memo_pdu_data; unsigned cmplen = coap_get_token_len(src_pdu); for (int i = 0; i < CONFIG_GCOAP_REQ_WAITING_MAX; i++) { if (_coap_state.open_reqs[i].state == GCOAP_MEMO_UNUSED) { continue; } gcoap_request_memo_t *memo = &_coap_state.open_reqs[i]; memo_pdu->hdr = gcoap_request_memo_get_hdr(memo); if (by_mid) { if ((src_pdu->hdr->id == memo_pdu->hdr->id) && sock_udp_ep_equal(&memo->remote_ep, remote)) { *memo_ptr = memo; break; } } else if (coap_get_token_len(memo_pdu) == cmplen) { if ((memcmp(coap_get_token(src_pdu), coap_get_token(memo_pdu), cmplen) == 0) && (sock_udp_ep_equal(&memo->remote_ep, remote) /* Multicast addresses are not considered in matching responses */ || sock_udp_ep_is_multicast(&memo->remote_ep) )) { *memo_ptr = memo; break; } } } } /* Calls handler callback on receipt of a timeout message. */ static void _expire_request(gcoap_request_memo_t *memo) { DEBUG("coap: received timeout message\n"); if ((memo->state == GCOAP_MEMO_RETRANSMIT) || (memo->state == GCOAP_MEMO_WAIT)) { memo->state = GCOAP_MEMO_TIMEOUT; /* Pass response to handler */ if (memo->resp_handler) { coap_pkt_t req; req.hdr = gcoap_request_memo_get_hdr(memo); memo->resp_handler(memo, &req, NULL); } if (memo->send_limit != GCOAP_SEND_LIMIT_NON) { *memo->msg.data.pdu_buf = 0; /* clear resend buffer */ } memo->state = GCOAP_MEMO_UNUSED; } else { /* Response already handled; timeout must have fired while response */ /* was in queue. */ } } /* * Handler for /.well-known/core. Lists registered handlers, except for * /.well-known/core itself. */ static ssize_t _well_known_core_handler(coap_pkt_t* pdu, uint8_t *buf, size_t len, coap_request_ctx_t *ctx) { (void)ctx; gcoap_resp_init(pdu, buf, len, COAP_CODE_CONTENT); coap_opt_add_format(pdu, COAP_FORMAT_LINK); ssize_t plen = coap_opt_finish(pdu, COAP_OPT_FINISH_PAYLOAD); plen += gcoap_get_resource_list(pdu->payload, (size_t)pdu->payload_len, COAP_FORMAT_LINK, (gcoap_socket_type_t)coap_request_ctx_get_tl_type(ctx)); return plen; } /* * Find registered observer for a remote address and port. * * observer[out] -- Registered observer, or NULL if not found * remote[in] -- Endpoint to match * * return Index of empty slot, suitable for registering new observer; or -1 * if no empty slots. Undefined if observer found. */ static int _find_observer(sock_udp_ep_t **observer, sock_udp_ep_t *remote) { int empty_slot = -1; *observer = NULL; for (unsigned i = 0; i < CONFIG_GCOAP_OBS_CLIENTS_MAX; i++) { if (_coap_state.observers[i].family == AF_UNSPEC) { empty_slot = i; } else if (sock_udp_ep_equal(&_coap_state.observers[i], remote)) { *observer = &_coap_state.observers[i]; break; } } return empty_slot; } /* * Find registered observe memo for a remote address and token. * * memo[out] -- Registered observe memo, or NULL if not found * remote[in] -- Endpoint for address to match * pdu[in] -- PDU for token to match, or NULL to match only on remote address * * return Index of empty slot, suitable for registering new memo; or -1 if no * empty slots. Undefined if memo found. */ static int _find_obs_memo(gcoap_observe_memo_t **memo, sock_udp_ep_t *remote, coap_pkt_t *pdu) { int empty_slot = -1; *memo = NULL; sock_udp_ep_t *remote_observer = NULL; _find_observer(&remote_observer, remote); for (unsigned i = 0; i < CONFIG_GCOAP_OBS_REGISTRATIONS_MAX; i++) { if (_coap_state.observe_memos[i].observer == NULL) { empty_slot = i; continue; } if (_coap_state.observe_memos[i].observer == remote_observer) { if (pdu == NULL) { *memo = &_coap_state.observe_memos[i]; break; } unsigned memo_token_len = _coap_state.observe_memos[i].token_len; if (memo_token_len == coap_get_token_len(pdu) && memo_token_len && memcmp(&_coap_state.observe_memos[i].token[0], coap_get_token(pdu), memo_token_len) == 0) { *memo = &_coap_state.observe_memos[i]; break; } } } return empty_slot; } /* * Find registered observe memo for a resource. * * memo[out] -- Registered observe memo, or NULL if not found * resource[in] -- Resource to match */ static void _find_obs_memo_resource(gcoap_observe_memo_t **memo, const coap_resource_t *resource) { *memo = NULL; for (int i = 0; i < CONFIG_GCOAP_OBS_REGISTRATIONS_MAX; i++) { if (_coap_state.observe_memos[i].observer != NULL && _coap_state.observe_memos[i].resource == resource) { *memo = &_coap_state.observe_memos[i]; break; } } } /* * Transport layer functions */ static int _tl_init_coap_socket(gcoap_socket_t *sock, gcoap_socket_type_t type) { switch (type) { #if !IS_USED(MODULE_GCOAP_DTLS) case GCOAP_SOCKET_TYPE_UNDEF: #endif case GCOAP_SOCKET_TYPE_UDP: sock->type = GCOAP_SOCKET_TYPE_UDP; sock->socket.udp = &_sock_udp; break; #if IS_USED(MODULE_GCOAP_DTLS) case GCOAP_SOCKET_TYPE_UNDEF: case GCOAP_SOCKET_TYPE_DTLS: sock->type = GCOAP_SOCKET_TYPE_DTLS; sock->socket.dtls = &_sock_dtls; break; #else default: return -1; #endif } return 0; } static ssize_t _tl_send(gcoap_socket_t *sock, const void *data, size_t len, const sock_udp_ep_t *remote, sock_udp_aux_tx_t *aux) { ssize_t res = -1; switch (sock->type) { case GCOAP_SOCKET_TYPE_UDP: res = sock_udp_send_aux(sock->socket.udp, data, len, remote, aux); break; #if IS_USED(MODULE_GCOAP_DTLS) case GCOAP_SOCKET_TYPE_DTLS: /* prepare session */ sock_dtls_session_set_udp_ep(&sock->ctx_dtls_session, remote); dsm_state_t session_state = dsm_store(sock->socket.dtls, &sock->ctx_dtls_session, SESSION_STATE_HANDSHAKE, true); if (session_state == NO_SPACE) { return -1; } /* send application data */ res = sock_dtls_send(sock->socket.dtls, &sock->ctx_dtls_session, data, len, SOCK_NO_TIMEOUT); switch (res) { case -EHOSTUNREACH: case -ENOTCONN: case 0: DEBUG("gcoap: DTLS sock not connected or remote unreachable. " "Destroying session.\n"); dsm_remove(sock->socket.dtls, &sock->ctx_dtls_session); sock_dtls_session_destroy(sock->socket.dtls, &sock->ctx_dtls_session); break; default: /* Temporary error. Keeping the DTLS session */ break; } break; #endif default: DEBUG("gcoap: undefined socket type\n"); break; } return res; } static ssize_t _tl_authenticate(gcoap_socket_t *sock, const sock_udp_ep_t *remote, uint32_t timeout) { #if !IS_USED(MODULE_GCOAP_DTLS) (void)sock; (void)remote; (void)timeout; return 0; #else int res; if (sock->type != GCOAP_SOCKET_TYPE_DTLS) { return 0; } /* prepare session */ sock_dtls_session_set_udp_ep(&sock->ctx_dtls_session, remote); dsm_state_t session_state = dsm_store(sock->socket.dtls, &sock->ctx_dtls_session, SESSION_STATE_HANDSHAKE, true); if (session_state == SESSION_STATE_ESTABLISHED) { return 0; } if (session_state == NO_SPACE) { DEBUG("gcoap: no space in dsm\n"); return -ENOTCONN; } /* start handshake */ _auth_waiting_thread = thread_getpid(); res = sock_dtls_session_init(sock->socket.dtls, remote, &sock->ctx_dtls_session); if (res == 0) { /* session already exists */ _auth_waiting_thread = -1; return res; } msg_t msg; bool is_timed_out = false; do { uint32_t start = ztimer_now(ZTIMER_MSEC); res = ztimer_msg_receive_timeout(ZTIMER_MSEC, &msg, timeout); /* ensure whole timeout time for the case we receive other messages than * DTLS_EVENT_CONNECTED */ if (timeout != SOCK_NO_TIMEOUT) { uint32_t diff = (ztimer_now(ZTIMER_MSEC) - start); timeout = (diff > timeout) ? 0: timeout - diff; is_timed_out = (res < 0) || (timeout == 0); } } while (!is_timed_out && (msg.type != DTLS_EVENT_CONNECTED)); if (is_timed_out && (msg.type != DTLS_EVENT_CONNECTED)) { DEBUG("gcoap: authentication timed out\n"); dsm_remove(sock->socket.dtls, &sock->ctx_dtls_session); sock_dtls_session_destroy(sock->socket.dtls, &sock->ctx_dtls_session); return -ENOTCONN; } return 0; #endif } static nanocoap_cache_entry_t *_cache_lookup_memo(gcoap_request_memo_t *memo) { #if IS_USED(MODULE_NANOCOAP_CACHE) /* cache_key in memo is pre-processor guarded so we need to as well */ return nanocoap_cache_key_lookup(memo->cache_key); #else (void)memo; return NULL; #endif } static void _cache_process(gcoap_request_memo_t *memo, coap_pkt_t *pdu) { if (!IS_USED(MODULE_NANOCOAP_CACHE)) { return; } coap_pkt_t req; req.hdr = gcoap_request_memo_get_hdr(memo); size_t pdu_len = pdu->payload_len + (pdu->payload - (uint8_t *)pdu->hdr); #if IS_USED(MODULE_NANOCOAP_CACHE) nanocoap_cache_entry_t *ce; /* cache_key in memo is pre-processor guarded so we need to as well */ if ((ce = nanocoap_cache_process(memo->cache_key, coap_get_code_raw(&req), pdu, pdu_len))) { ce->truncated = (memo->state == GCOAP_MEMO_RESP_TRUNC); } #else (void)req; (void)pdu_len; #endif } static ssize_t _cache_build_response(nanocoap_cache_entry_t *ce, coap_pkt_t *pdu, uint8_t *buf, size_t len) { if (!IS_USED(MODULE_NANOCOAP_CACHE)) { return -ENOTSUP; } if (len < ce->response_len) { return -ENOBUFS; } /* Use the same code from the cached content. Use other header * fields from the incoming request */ gcoap_resp_init(pdu, buf, len, ce->response_pkt.hdr->code); /* copy all options and possible payload from the cached response * to the new response */ unsigned header_len_req = coap_get_total_hdr_len(pdu); unsigned header_len_cached = coap_get_total_hdr_len(&ce->response_pkt); unsigned opt_payload_len = ce->response_len - header_len_cached; /* copy all options and possible payload from the cached response * to the new response */ memcpy((buf + header_len_req), (ce->response_buf + header_len_cached), opt_payload_len); /* parse into pdu including all options and payload pointers etc */ coap_parse(pdu, buf, header_len_req + opt_payload_len); return ce->response_len; } static void _copy_hdr_from_req_memo(coap_pkt_t *pdu, gcoap_request_memo_t *memo) { coap_pkt_t req_pdu; req_pdu.hdr = gcoap_request_memo_get_hdr(memo); memcpy(pdu->hdr, req_pdu.hdr, coap_get_total_hdr_len(&req_pdu)); } static void _receive_from_cache_cb(void *ctx) { if (!IS_USED(MODULE_NANOCOAP_CACHE)) { return; } gcoap_request_memo_t *memo = ctx; nanocoap_cache_entry_t *ce = NULL; if ((ce = _cache_lookup_memo(memo))) { if (memo->resp_handler) { /* copy header from request so gcoap_resp_init in _cache_build_response works correctly */ coap_pkt_t pdu = { .hdr = (coap_hdr_t *)_listen_buf }; _copy_hdr_from_req_memo(&pdu, memo); if (_cache_build_response(ce, &pdu, _listen_buf, sizeof(_listen_buf)) >= 0) { memo->state = (ce->truncated) ? GCOAP_MEMO_RESP_TRUNC : GCOAP_MEMO_RESP; memo->resp_handler(memo, &pdu, &memo->remote_ep); if (memo->send_limit >= 0) { /* if confirmable */ *memo->msg.data.pdu_buf = 0; /* clear resend PDU buffer */ } memo->state = GCOAP_MEMO_UNUSED; } } } else { /* oops we somehow lost the cache entry */ DEBUG("gcoap: cache entry was lost\n"); if (memo->resp_handler) { memo->state = GCOAP_MEMO_ERR; memo->resp_handler(memo, NULL, &memo->remote_ep); } } } static void _update_memo_cache_key(gcoap_request_memo_t *memo, uint8_t *cache_key) { #if IS_USED(MODULE_NANOCOAP_CACHE) if (memo) { /* memo->cache_key is guarded by MODULE_NANOCOAP_CACHE, so preprocessor * magic is needed */ memcpy(memo->cache_key, cache_key, CONFIG_NANOCOAP_CACHE_KEY_LENGTH); } #else (void)memo; (void)cache_key; #endif } static bool _cache_lookup(gcoap_request_memo_t *memo, coap_pkt_t *pdu, nanocoap_cache_entry_t **ce) { if (IS_USED(MODULE_NANOCOAP_CACHE)) { uint8_t cache_key[SHA256_DIGEST_LENGTH]; ztimer_now_t now = ztimer_now(ZTIMER_SEC); nanocoap_cache_key_generate(pdu, cache_key); *ce = nanocoap_cache_key_lookup(cache_key); _update_memo_cache_key(memo, cache_key); /* cache hit, methods are equal, and cache entry is not stale */ if (*ce && ((*ce)->request_method == coap_get_code_raw(pdu)) && !nanocoap_cache_entry_is_stale(*ce, now)) { return true; } } return false; } static ssize_t _cache_check(const uint8_t *buf, size_t len, gcoap_request_memo_t *memo, bool *cache_hit) { if (!IS_USED(MODULE_NANOCOAP_CACHE)) { return len; } coap_pkt_t req; nanocoap_cache_entry_t *ce = NULL; /* XXX cast to const might cause problems here :-/ */ ssize_t res = coap_parse(&req, (uint8_t *)buf, len); if (res < 0) { DEBUG("gcoap: parse failure for cache lookup: %d\n", (int)res); return -EINVAL; } if (coap_get_code_class(&req) != COAP_CLASS_REQ) { /* Not a request so ignore, as gcoap_req_send might have been used with * its undocumented function to send a CON response from submodule */ return len; } *cache_hit = _cache_lookup(memo, &req, &ce); if (!(*cache_hit) && (ce != NULL)) { /* Cache entry was found, but it is stale. Try to validate */ uint8_t *resp_etag; /* Searching for more ETags might become necessary in the future */ ssize_t resp_etag_len = coap_opt_get_opaque(&ce->response_pkt, COAP_OPT_ETAG, &resp_etag); /* ETag found, but don't act on illegal ETag size */ if ((resp_etag_len > 0) && ((size_t)resp_etag_len <= COAP_ETAG_LENGTH_MAX)) { uint8_t *tmp_etag; ssize_t tmp_etag_len = coap_opt_get_opaque(&req, COAP_OPT_ETAG, &tmp_etag); if (tmp_etag_len >= resp_etag_len) { /* peak length without padding */ size_t rem_len = (len - (tmp_etag + tmp_etag_len - buf)); if ((tmp_etag < buf) || (tmp_etag > (buf + len)) || (rem_len > (len - ((tmp_etag + COAP_ETAG_LENGTH_MAX) - buf)))) { DEBUG("gcoap: invalid calculated padding length (%lu) for ETag injection " "during cache lookup.\n", (long unsigned)rem_len); /* something fishy happened in the request. Better don't return cache entry */ *cache_hit = false; #if IS_USED(MODULE_NANOCOAP_CACHE) memset(memo->cache_key, 0, sizeof(memo->cache_key)); #endif return -EINVAL; } memcpy(tmp_etag, resp_etag, resp_etag_len); /* shorten ETag option if necessary */ if ((size_t)resp_etag_len < COAP_ETAG_LENGTH_MAX) { /* now we need the start of the option (not its value) so dig once more */ uint8_t *start = coap_find_option(&req, COAP_OPT_ETAG); /* option length must always be <= COAP_ETAG_LENGTH_MAX = 8 < 12, so the length * is encoded in the first byte, see also RFC 7252, section 3.1 */ *start &= 0xf0; /* first if around here should make sure we are <= 8 < 0xf, so we don't need to * bitmask resp_etag_len */ *start |= (uint8_t)resp_etag_len; /* remove padding */ memmove(tmp_etag + resp_etag_len, tmp_etag + COAP_ETAG_LENGTH_MAX, rem_len); len -= (COAP_ETAG_LENGTH_MAX - resp_etag_len); } } } else { len = coap_opt_remove(&req, COAP_OPT_ETAG); } } else { len = coap_opt_remove(&req, COAP_OPT_ETAG); } return len; } /* * gcoap interface functions */ kernel_pid_t gcoap_init(void) { if (_pid != KERNEL_PID_UNDEF) { return -EEXIST; } _pid = thread_create(_msg_stack, sizeof(_msg_stack), THREAD_PRIORITY_MAIN - 1, THREAD_CREATE_STACKTEST, _event_loop, NULL, "coap"); mutex_init(&_coap_state.lock); /* Blank lists so we know if an entry is available. */ memset(&_coap_state.open_reqs[0], 0, sizeof(_coap_state.open_reqs)); memset(&_coap_state.observers[0], 0, sizeof(_coap_state.observers)); memset(&_coap_state.observe_memos[0], 0, sizeof(_coap_state.observe_memos)); memset(&_coap_state.resend_bufs[0], 0, sizeof(_coap_state.resend_bufs)); /* randomize initial value */ atomic_init(&_coap_state.next_message_id, (unsigned)random_uint32()); if (IS_USED(MODULE_NANOCOAP_CACHE)) { nanocoap_cache_init(); } /* initialize the forward proxy operation, if compiled */ if (IS_ACTIVE(MODULE_GCOAP_FORWARD_PROXY)) { gcoap_forward_proxy_init(); } #ifdef MODULE_NANOCOAP_RESOURCES /* add CoAP resources from XFA */ XFA_USE_CONST(coap_resource_t, coap_resources_xfa); static gcoap_listener_t _xfa_listener = { .resources = coap_resources_xfa, }; _xfa_listener.resources_len = XFA_LEN(coap_resource_t, coap_resources_xfa), gcoap_register_listener(&_xfa_listener); #endif return _pid; } uint16_t gcoap_next_msg_id(void) { return (uint16_t)atomic_fetch_add(&_coap_state.next_message_id, 1); } void gcoap_register_listener(gcoap_listener_t *listener) { /* That item will be overridden, ensure that the user expecting different * behavior will notice this. */ assert(listener->next == NULL); listener->next = _coap_state.listeners; _coap_state.listeners = listener; if (!listener->link_encoder) { listener->link_encoder = gcoap_encode_link; } if (!listener->request_matcher) { listener->request_matcher = _request_matcher_default; } } int gcoap_req_init_path_buffer(coap_pkt_t *pdu, uint8_t *buf, size_t len, unsigned code, const char *path, size_t path_len) { assert((path == NULL) || (path[0] == '/')); pdu->hdr = (coap_hdr_t *)buf; /* generate token */ uint16_t msgid = gcoap_next_msg_id(); ssize_t res; if (code) { #if CONFIG_GCOAP_TOKENLEN uint8_t token[CONFIG_GCOAP_TOKENLEN]; for (size_t i = 0; i < CONFIG_GCOAP_TOKENLEN; i += 4) { uint32_t rand = random_uint32(); memcpy(&token[i], &rand, (CONFIG_GCOAP_TOKENLEN - i >= 4) ? 4 : CONFIG_GCOAP_TOKENLEN - i); } res = coap_build_hdr(pdu->hdr, COAP_TYPE_NON, &token[0], CONFIG_GCOAP_TOKENLEN, code, msgid); #else res = coap_build_hdr(pdu->hdr, COAP_TYPE_NON, NULL, CONFIG_GCOAP_TOKENLEN, code, msgid); #endif } else { /* ping request */ res = coap_build_hdr(pdu->hdr, COAP_TYPE_CON, NULL, 0, code, msgid); } coap_pkt_init(pdu, buf, len, res); if (IS_USED(MODULE_NANOCOAP_CACHE)) { static const uint8_t tmp[COAP_ETAG_LENGTH_MAX] = { 0 }; /* add slack to maybe add an ETag on stale cache hit later */ res = coap_opt_add_opaque(pdu, COAP_OPT_ETAG, tmp, sizeof(tmp)); } if ((res > 0) && (path != NULL) && (path_len > 0)) { res = coap_opt_add_uri_path_buffer(pdu, path, path_len); } return (res > 0) ? 0 : res; } ssize_t gcoap_req_send_tl(const uint8_t *buf, size_t len, const sock_udp_ep_t *remote, gcoap_resp_handler_t resp_handler, void *context, gcoap_socket_type_t tl_type) { gcoap_socket_t socket = { 0 }; gcoap_request_memo_t *memo = NULL; unsigned msg_type = (*buf & 0x30) >> 4; uint32_t timeout = 0; ssize_t res = 0; bool cache_hit = false; assert(remote != NULL); res = _tl_init_coap_socket(&socket, tl_type); if (res < 0) { return -EINVAL; } /* Only allocate memory if necessary (i.e. if user is interested in the * response or request is confirmable) */ if ((resp_handler != NULL) || (msg_type == COAP_TYPE_CON)) { mutex_lock(&_coap_state.lock); /* Find empty slot in list of open requests. */ for (int i = 0; i < CONFIG_GCOAP_REQ_WAITING_MAX; i++) { if (_coap_state.open_reqs[i].state == GCOAP_MEMO_UNUSED) { memo = &_coap_state.open_reqs[i]; memo->state = GCOAP_MEMO_WAIT; break; } } if (!memo) { mutex_unlock(&_coap_state.lock); DEBUG("gcoap: dropping request; no space for response tracking\n"); return 0; } memo->resp_handler = resp_handler; memo->context = context; memcpy(&memo->remote_ep, remote, sizeof(sock_udp_ep_t)); memo->socket = socket; if (IS_USED(MODULE_NANOCOAP_CACHE)) { ssize_t res = _cache_check(buf, len, memo, &cache_hit); if (res < 0) { return res; } len = res; } switch (msg_type) { case COAP_TYPE_CON: /* copy buf to resend_bufs record */ memo->msg.data.pdu_buf = NULL; for (int i = 0; i < CONFIG_GCOAP_RESEND_BUFS_MAX; i++) { if (!_coap_state.resend_bufs[i][0]) { memo->msg.data.pdu_buf = &_coap_state.resend_bufs[i][0]; memcpy(memo->msg.data.pdu_buf, buf, CONFIG_GCOAP_PDU_BUF_SIZE); memo->msg.data.pdu_len = len; break; } } if (memo->msg.data.pdu_buf) { memo->send_limit = CONFIG_COAP_MAX_RETRANSMIT; timeout = (uint32_t)CONFIG_COAP_ACK_TIMEOUT_MS; #if CONFIG_COAP_RANDOM_FACTOR_1000 > 1000 timeout = random_uint32_range(timeout, TIMEOUT_RANGE_END); #endif memo->state = GCOAP_MEMO_RETRANSMIT; } else { memo->state = GCOAP_MEMO_UNUSED; DEBUG("gcoap: no space for PDU in resend bufs\n"); } break; case COAP_TYPE_NON: memo->send_limit = GCOAP_SEND_LIMIT_NON; memcpy(&memo->msg.hdr_buf[0], buf, GCOAP_HEADER_MAXLEN); timeout = CONFIG_GCOAP_NON_TIMEOUT_MSEC; break; default: memo->state = GCOAP_MEMO_UNUSED; DEBUG("gcoap: illegal msg type %u\n", msg_type); break; } mutex_unlock(&_coap_state.lock); if (memo->state == GCOAP_MEMO_UNUSED) { return 0; } if (cache_hit) { /* post to receive cache entry */ event_callback_init(&_receive_from_cache, _receive_from_cache_cb, memo); event_post(&_queue, &_receive_from_cache.super); return len; } } /* check cache without memo */ else if (IS_USED(MODULE_NANOCOAP_CACHE)) { ssize_t res = _cache_check(buf, len, NULL, &cache_hit); if (res < 0) { return res; } if (cache_hit > 0) { return res; } } _tl_init_coap_socket(&socket, tl_type); if (IS_USED(MODULE_GCOAP_DTLS) && socket.type == GCOAP_SOCKET_TYPE_DTLS) { res = _tl_authenticate(&socket, remote, CONFIG_GCOAP_DTLS_HANDSHAKE_TIMEOUT_MSEC); } /* set response timeout; may be zero for non-confirmable */ if (memo != NULL && res == 0) { if (timeout > 0) { event_callback_init(&memo->resp_tmout_cb, _on_resp_timeout, memo); event_timeout_ztimer_init(&memo->resp_evt_tmout, ZTIMER_MSEC, &_queue, &memo->resp_tmout_cb.super); event_timeout_set(&memo->resp_evt_tmout, timeout); } else { memset(&memo->resp_evt_tmout, 0, sizeof(event_timeout_t)); } } if (res == 0) { res = _tl_send(&socket, buf, len, remote, NULL); } if (res <= 0) { if (memo != NULL) { if (msg_type == COAP_TYPE_CON) { *memo->msg.data.pdu_buf = 0; /* clear resend buffer */ } if (timeout > 0) { event_timeout_clear(&memo->resp_evt_tmout); } memo->state = GCOAP_MEMO_UNUSED; } DEBUG("gcoap: sock send failed: %d\n", (int)res); } return ((res > 0 || res == -ENOTCONN) ? res : 0); } static void _add_generated_observe_option(coap_pkt_t *pdu) { /* generate initial notification value */ uint32_t now = ztimer_now(ZTIMER_MSEC); pdu->observe_value = (now >> GCOAP_OBS_TICK_EXPONENT) & 0xFFFFFF; coap_opt_add_uint(pdu, COAP_OPT_OBSERVE, pdu->observe_value); } int gcoap_resp_init(coap_pkt_t *pdu, uint8_t *buf, size_t len, unsigned code) { int header_len = coap_build_reply(pdu, code, buf, len, 0); /* request contained no-response option or not enough space for response */ if (header_len <= 0) { return -1; } pdu->options_len = 0; pdu->payload = buf + header_len; pdu->payload_len = len - header_len; if (coap_get_observe(pdu) == COAP_OBS_REGISTER) { _add_generated_observe_option(pdu); } return 0; } int gcoap_obs_init(coap_pkt_t *pdu, uint8_t *buf, size_t len, const coap_resource_t *resource) { gcoap_observe_memo_t *memo = NULL; _find_obs_memo_resource(&memo, resource); if (memo == NULL) { /* Unique return value to specify there is not an observer */ return GCOAP_OBS_INIT_UNUSED; } pdu->hdr = (coap_hdr_t *)buf; uint16_t msgid = gcoap_next_msg_id(); ssize_t hdrlen = coap_build_hdr(pdu->hdr, COAP_TYPE_NON, &memo->token[0], memo->token_len, COAP_CODE_CONTENT, msgid); if (hdrlen > 0) { coap_pkt_init(pdu, buf, len, hdrlen); _add_generated_observe_option(pdu); return GCOAP_OBS_INIT_OK; } else { /* reason for negative hdrlen is not defined, so we also are vague */ return GCOAP_OBS_INIT_ERR; } } size_t gcoap_obs_send(const uint8_t *buf, size_t len, const coap_resource_t *resource) { gcoap_observe_memo_t *memo = NULL; _find_obs_memo_resource(&memo, resource); if (memo) { ssize_t bytes = _tl_send(&memo->socket, buf, len, memo->observer, NULL); return (size_t)((bytes > 0) ? bytes : 0); } else { return 0; } } uint8_t gcoap_op_state(void) { uint8_t count = 0; for (int i = 0; i < CONFIG_GCOAP_REQ_WAITING_MAX; i++) { if (_coap_state.open_reqs[i].state != GCOAP_MEMO_UNUSED) { count++; } } return count; } int gcoap_get_resource_list(void *buf, size_t maxlen, uint8_t cf, gcoap_socket_type_t tl_type) { assert(cf == COAP_FORMAT_LINK); gcoap_listener_t *listener = _coap_state.listeners; char *out = (char *)buf; size_t pos = 0; coap_link_encoder_ctx_t ctx; ctx.content_format = cf; /* indicate initial link for the list */ ctx.flags = COAP_LINK_FLAG_INIT_RESLIST; /* write payload */ for (; listener != NULL; listener = listener->next) { if (!listener->link_encoder) { continue; } /* only makes sense to check if non-UDP transports are supported, * so check if module is used first. */ if (IS_USED(MODULE_GCOAP_DTLS) && (tl_type != GCOAP_SOCKET_TYPE_UNDEF) && (listener->tl_type != GCOAP_SOCKET_TYPE_UNDEF) && ((listener->tl_type & GCOAP_SOCKET_TYPE_UDP) != (tl_type & GCOAP_SOCKET_TYPE_UDP)) && ((listener->tl_type & GCOAP_SOCKET_TYPE_DTLS) != (tl_type & GCOAP_SOCKET_TYPE_DTLS))) { continue; } ctx.link_pos = 0; for (; ctx.link_pos < listener->resources_len; ctx.link_pos++) { ssize_t res; if (out) { res = listener->link_encoder(&listener->resources[ctx.link_pos], &out[pos], maxlen - pos, &ctx); } else { res = listener->link_encoder(&listener->resources[ctx.link_pos], NULL, 0, &ctx); } if (res > 0) { pos += res; ctx.flags &= ~COAP_LINK_FLAG_INIT_RESLIST; } else { break; } } } return (int)pos; } ssize_t gcoap_encode_link(const coap_resource_t *resource, char *buf, size_t maxlen, coap_link_encoder_ctx_t *context) { size_t path_len = strlen(resource->path); /* count target separators and any link separator */ size_t exp_size = path_len + 2 + ((context->flags & COAP_LINK_FLAG_INIT_RESLIST) ? 0 : 1); if (buf) { unsigned pos = 0; if (exp_size > maxlen) { return -1; } if (!(context->flags & COAP_LINK_FLAG_INIT_RESLIST)) { buf[pos++] = ','; } buf[pos++] = '<'; memcpy(&buf[pos], resource->path, path_len); buf[pos+path_len] = '>'; } return exp_size; } #if IS_USED(MODULE_GCOAP_DTLS) sock_dtls_t *gcoap_get_sock_dtls(void) { return &_sock_dtls; } #endif /* */ void gcoap_forward_proxy_find_req_memo(gcoap_request_memo_t **memo_ptr, coap_pkt_t *src_pdu, const sock_udp_ep_t *remote) { _find_req_memo(memo_ptr, src_pdu, remote, false); } void gcoap_forward_proxy_post_event(void *arg) { event_post(&_queue, arg); } /** @} */