/* * Copyright (C) 2016 OTA keys S.A. * * This file is subject to the terms and conditions of the GNU Lesser * General Public License v2.1. See the file LICENSE in the top level * directory for more details. */ /** * @{ * * @file */ #include #include #include "embUnit.h" #include "mtd.h" #include "mtd_flashpage.h" /* For MSP430 cpu's the last page holds the interrupt vector, although the api should not limit erasing that page, we don't want to break when testing */ #if defined(CPU_CC430) || defined(CPU_MSP430FXYZ) #define LAST_AVAILABLE_PAGE (FLASHPAGE_NUMOF - 2) #else #define LAST_AVAILABLE_PAGE (FLASHPAGE_NUMOF - 1) #endif #if (__SIZEOF_POINTER__ == 2) #define TEST_ADDRESS1 (uint16_t)flashpage_addr(LAST_AVAILABLE_PAGE) #define TEST_ADDRESS2 (uint16_t)flashpage_addr(LAST_AVAILABLE_PAGE - 1) #else #define TEST_ADDRESS1 (uint32_t)flashpage_addr(LAST_AVAILABLE_PAGE) #define TEST_ADDRESS2 (uint32_t)flashpage_addr(LAST_AVAILABLE_PAGE - 1) #endif #define TEST_ADDRESS0 (FLASHPAGE_NUMOF - 1) static mtd_dev_t _dev = MTD_FLASHPAGE_INIT_VAL(8); static mtd_dev_t *dev = &_dev; static void setup(void) { int ret = mtd_init(dev); TEST_ASSERT_EQUAL_INT(0, ret); mtd_erase(dev, TEST_ADDRESS1, dev->pages_per_sector * dev->page_size); mtd_erase(dev, TEST_ADDRESS2, dev->pages_per_sector * dev->page_size); } static void teardown(void) { mtd_erase(dev, TEST_ADDRESS1, dev->pages_per_sector * dev->page_size); mtd_erase(dev, TEST_ADDRESS2, dev->pages_per_sector * dev->page_size); } static void test_mtd_init(void) { int ret = mtd_init(dev); TEST_ASSERT_EQUAL_INT(0, ret); } static void test_mtd_erase(void) { /* Erase last sector */ int ret = mtd_erase(dev, TEST_ADDRESS1, FLASHPAGE_SIZE); TEST_ASSERT_EQUAL_INT(0, ret); /* Erase with wrong size (less than sector size) */ ret = mtd_erase(dev, TEST_ADDRESS1, dev->page_size); TEST_ASSERT_EQUAL_INT(-EOVERFLOW, ret); /* Unaligned erase */ ret = mtd_erase(dev, TEST_ADDRESS1 + dev->page_size, dev->page_size); TEST_ASSERT_EQUAL_INT(-EOVERFLOW, ret); /* Erase 2 last available pages */ ret = mtd_erase(dev, TEST_ADDRESS2, FLASHPAGE_SIZE * 2); TEST_ASSERT_EQUAL_INT(0, ret); /* Erase out of memory area */ ret = mtd_erase(dev, TEST_ADDRESS0, FLASHPAGE_SIZE * 2); TEST_ASSERT_EQUAL_INT(-EOVERFLOW, ret); } static void test_mtd_write_erase(void) { const char buf[] = "ABCDEFGHIJKLMNO"; /* stm32l0x and stm32l1x erase its flash with 0's */ #if defined(CPU_FAM_STM32L0) || defined(CPU_FAM_STM32L1) uint8_t buf_empty[] = {0, 0, 0}; #else uint8_t buf_empty[] = {0xff, 0xff, 0xff}; #endif char buf_read[sizeof(buf) + sizeof(buf_empty)]; memset(buf_read, 0, sizeof(buf_read)); int ret = mtd_write(dev, buf, TEST_ADDRESS1, sizeof(buf)); TEST_ASSERT_EQUAL_INT(0, ret); ret = mtd_write(dev, buf, TEST_ADDRESS2, sizeof(buf)); TEST_ASSERT_EQUAL_INT(0, ret); /* Erase both sectors */ ret = mtd_erase(dev, TEST_ADDRESS2, 2 * dev->pages_per_sector * dev->page_size); TEST_ASSERT_EQUAL_INT(0, ret); uint8_t expected[sizeof(buf_read)]; #if defined(CPU_FAM_STM32L0) || defined(CPU_FAM_STM32L1) memset(expected, 0, sizeof(expected)); #else memset(expected, 0xff, sizeof(expected)); #endif ret = mtd_read(dev, buf_read, TEST_ADDRESS1, sizeof(buf_read)); TEST_ASSERT_EQUAL_INT(0, ret); TEST_ASSERT_EQUAL_INT(0, memcmp(expected, buf_read, sizeof(buf_read))); ret = mtd_read(dev, buf_read, TEST_ADDRESS2, sizeof(buf_read)); TEST_ASSERT_EQUAL_INT(0, ret); TEST_ASSERT_EQUAL_INT(0, memcmp(expected, buf_read, sizeof(buf_read))); } static void test_mtd_write_read(void) { const char buf[] __attribute__ ((aligned (FLASHPAGE_RAW_ALIGNMENT))) = "ABCDEFGHIJKLMNO"; /* stm32l0x and stm32l1x erase its flash with 0's */ #if defined(CPU_FAM_STM32L0) || defined(CPU_FAM_STM32L1) uint8_t buf_empty[] = {0, 0, 0}; #else uint8_t buf_empty[] = {0xff, 0xff, 0xff}; #endif char buf_read[sizeof(buf) + sizeof(buf_empty)]; memset(buf_read, 0, sizeof(buf_read)); /* Basic write / read */ int ret = mtd_write(dev, buf, TEST_ADDRESS1, sizeof(buf)); TEST_ASSERT_EQUAL_INT(0, ret); ret = mtd_read(dev, buf_read, TEST_ADDRESS1, sizeof(buf_read)); TEST_ASSERT_EQUAL_INT(0, ret); TEST_ASSERT_EQUAL_INT(0, memcmp(buf, buf_read, sizeof(buf))); TEST_ASSERT_EQUAL_INT(0, memcmp(buf_empty, buf_read + sizeof(buf), sizeof(buf_empty))); ret = mtd_erase(dev, TEST_ADDRESS1, dev->pages_per_sector * dev->page_size); TEST_ASSERT_EQUAL_INT(0, ret); /* Unaligned write / read */ ret = mtd_write(dev, buf, TEST_ADDRESS1 + sizeof(buf_empty), sizeof(buf)); TEST_ASSERT_EQUAL_INT(-EINVAL, ret); /* Only Cortex-M0 doesn't allow unaligned reads */ #if defined(CPU_CORE_CORTEX_M0) ret = mtd_read(dev, buf_read, TEST_ADDRESS1 + sizeof(buf_empty), sizeof(buf_read)); TEST_ASSERT_EQUAL_INT(-EINVAL, ret); #endif } Test *tests_mtd_flashpage_tests(void) { EMB_UNIT_TESTFIXTURES(fixtures) { new_TestFixture(test_mtd_init), new_TestFixture(test_mtd_erase), new_TestFixture(test_mtd_write_erase), new_TestFixture(test_mtd_write_read), }; EMB_UNIT_TESTCALLER(mtd_flashpage_tests, setup, teardown, fixtures); return (Test *)&mtd_flashpage_tests; } int main(void) { TESTS_START(); TESTS_RUN(tests_mtd_flashpage_tests()); TESTS_END(); return 0; } /** @} */