/* * Copyright (C) 2014-2016 Freie Universität Berlin * 2015 Jan Wagner * * * This file is subject to the terms and conditions of the GNU Lesser * General Public License v2.1. See the file LICENSE in the top level * directory for more details. */ /** * @ingroup cpu_nrf5x_common * @{ * * @file * @brief Implementation of the peripheral UART interface * * @author Christian Kühling * @author Timo Ziegler * @author Hauke Petersen * @author Jan Wagner * * @} */ #include #include "cpu.h" #include "sched.h" #include "thread.h" #include "periph/uart.h" #include "periph_cpu.h" #include "periph_conf.h" /** * @brief Allocate memory for the interrupt context */ static uart_isr_ctx_t uart_config; int uart_init(uart_t uart, uint32_t baudrate, uart_rx_cb_t rx_cb, void *arg) { if (uart != 0) { return -1; } /* remember callback addresses and argument */ uart_config.rx_cb = rx_cb; uart_config.arg = arg; #ifdef CPU_FAM_NRF51 /* power on the UART device */ NRF_UART0->POWER = 1; #endif /* reset configuration registers */ NRF_UART0->CONFIG = 0; /* configure RX/TX pin modes */ GPIO_BASE->DIRSET = (1 << UART_PIN_TX); GPIO_BASE->DIRCLR = (1 << UART_PIN_RX); /* configure UART pins to use */ NRF_UART0->PSELTXD = UART_PIN_TX; NRF_UART0->PSELRXD = UART_PIN_RX; /* enable HW-flow control if defined */ #if UART_HWFLOWCTRL /* set pin mode for RTS and CTS pins */ GPIO_BASE->DIRSET = (1 << UART_PIN_RTS); GPIO_BASE->DIRCLR = (1 << UART_PIN_CTS); /* configure RTS and CTS pins to use */ NRF_UART0->PSELRTS = UART_PIN_RTS; NRF_UART0->PSELCTS = UART_PIN_CTS; NRF_UART0->CONFIG |= UART_CONFIG_HWFC_Msk; /* enable HW flow control */ #else NRF_UART0->PSELRTS = 0xffffffff; /* pin disconnected */ NRF_UART0->PSELCTS = 0xffffffff; /* pin disconnected */ #endif /* select baudrate */ switch (baudrate) { case 1200: NRF_UART0->BAUDRATE = UART_BAUDRATE_BAUDRATE_Baud1200; break; case 2400: NRF_UART0->BAUDRATE = UART_BAUDRATE_BAUDRATE_Baud2400; break; case 4800: NRF_UART0->BAUDRATE = UART_BAUDRATE_BAUDRATE_Baud4800; break; case 9600: NRF_UART0->BAUDRATE = UART_BAUDRATE_BAUDRATE_Baud9600; break; case 14400: NRF_UART0->BAUDRATE = UART_BAUDRATE_BAUDRATE_Baud14400; break; case 19200: NRF_UART0->BAUDRATE = UART_BAUDRATE_BAUDRATE_Baud19200; break; case 28800: NRF_UART0->BAUDRATE = UART_BAUDRATE_BAUDRATE_Baud28800; break; case 38400: NRF_UART0->BAUDRATE = UART_BAUDRATE_BAUDRATE_Baud38400; break; case 57600: NRF_UART0->BAUDRATE = UART_BAUDRATE_BAUDRATE_Baud57600; break; case 76800: NRF_UART0->BAUDRATE = UART_BAUDRATE_BAUDRATE_Baud76800; break; case 115200: NRF_UART0->BAUDRATE = UART_BAUDRATE_BAUDRATE_Baud115200; break; case 230400: NRF_UART0->BAUDRATE = UART_BAUDRATE_BAUDRATE_Baud230400; break; case 250000: NRF_UART0->BAUDRATE = UART_BAUDRATE_BAUDRATE_Baud250000; break; case 460800: NRF_UART0->BAUDRATE = UART_BAUDRATE_BAUDRATE_Baud460800; break; case 921600: NRF_UART0->BAUDRATE = UART_BAUDRATE_BAUDRATE_Baud921600; break; default: return -2; } /* enable the UART device */ NRF_UART0->ENABLE = UART_ENABLE_ENABLE_Enabled; /* enable TX and RX */ NRF_UART0->TASKS_STARTTX = 1; NRF_UART0->TASKS_STARTRX = 1; /* enable global and receiving interrupt */ NVIC_EnableIRQ(UART_IRQN); NRF_UART0->INTENSET = UART_INTENSET_RXDRDY_Msk; return 0; } void uart_write(uart_t uart, const uint8_t *data, size_t len) { if (uart == 0) { for (size_t i = 0; i < len; i++) { /* write data into transmit register */ NRF_UART0->TXD = data[i]; /* wait for any transmission to be done */ while (NRF_UART0->EVENTS_TXDRDY == 0) {} /* reset ready flag */ NRF_UART0->EVENTS_TXDRDY = 0; } } } void uart_poweron(uart_t uart) { (void)uart; NRF_UART0->TASKS_STARTRX = 1; NRF_UART0->TASKS_STARTTX = 1; } void uart_poweroff(uart_t uart) { (void)uart; NRF_UART0->TASKS_SUSPEND; } void isr_uart0(void) { if (NRF_UART0->EVENTS_RXDRDY == 1) { NRF_UART0->EVENTS_RXDRDY = 0; uint8_t byte = (uint8_t)(NRF_UART0->RXD & 0xff); uart_config.rx_cb(uart_config.arg, byte); } if (sched_context_switch_request) { thread_yield(); } }