/*- * Copyright 2005 Colin Percival * Copyright 2013 Christian Mehlis & René Kijewski * Copyright 2016 Martin Landsmann * Copyright 2016 OTA keys S.A. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD: src/lib/libmd/sha256c.c,v 1.2 2006/01/17 15:35:56 phk Exp $ */ /** * @ingroup sys_hashes * @{ * * @file * @brief SHA256 hash function implementation * * @author Colin Percival * @author Christian Mehlis * @author Rene Kijewski * @author Martin Landsmann * @author Hermann Lelong * * @} */ #include #include #include "hashes/sha256.h" #include "hashes/sha2xx_common.h" /* SHA-256 initialization. Begins a SHA-256 operation. */ void sha256_init(sha256_context_t *ctx) { /* Zero bits processed so far */ ctx->count[0] = ctx->count[1] = 0; /* Magic initialization constants */ ctx->state[0] = 0x6A09E667; ctx->state[1] = 0xBB67AE85; ctx->state[2] = 0x3C6EF372; ctx->state[3] = 0xA54FF53A; ctx->state[4] = 0x510E527F; ctx->state[5] = 0x9B05688C; ctx->state[6] = 0x1F83D9AB; ctx->state[7] = 0x5BE0CD19; } void *sha256(const void *data, size_t len, void *digest) { sha256_context_t c; static unsigned char m[SHA256_DIGEST_LENGTH]; if (digest == NULL) { digest = m; } sha256_init(&c); sha2xx_update(&c, data, len); sha256_final(&c, digest); return digest; } void hmac_sha256_init(hmac_context_t *ctx, const void *key, size_t key_length) { unsigned char k[SHA256_INTERNAL_BLOCK_SIZE]; memset((void *)k, 0x00, SHA256_INTERNAL_BLOCK_SIZE); if (key_length > SHA256_INTERNAL_BLOCK_SIZE) { sha256(key, key_length, k); } else { memcpy((void *)k, key, key_length); } /* * create the inner and outer keypads * rising hamming distance enforcing i_* and o_* are distinct * in at least one bit */ unsigned char o_key_pad[SHA256_INTERNAL_BLOCK_SIZE]; unsigned char i_key_pad[SHA256_INTERNAL_BLOCK_SIZE]; for (size_t i = 0; i < SHA256_INTERNAL_BLOCK_SIZE; ++i) { o_key_pad[i] = 0x5c ^ k[i]; i_key_pad[i] = 0x36 ^ k[i]; } /* * Initiate calculation of the inner hash * tmp = hash(i_key_pad CONCAT message) */ sha256_init(&ctx->c_in); sha2xx_update(&ctx->c_in, i_key_pad, SHA256_INTERNAL_BLOCK_SIZE); /* * Initiate calculation of the outer hash * result = hash(o_key_pad CONCAT tmp) */ sha256_init(&ctx->c_out); sha2xx_update(&ctx->c_out, o_key_pad, SHA256_INTERNAL_BLOCK_SIZE); } void hmac_sha256_update(hmac_context_t *ctx, const void *data, size_t len) { sha2xx_update(&ctx->c_in, data, len); } void hmac_sha256_final(hmac_context_t *ctx, void *digest) { unsigned char tmp[SHA256_DIGEST_LENGTH]; static unsigned char m[SHA256_DIGEST_LENGTH]; if (digest == NULL) { digest = m; } sha256_final(&ctx->c_in, tmp); sha2xx_update(&ctx->c_out, tmp, SHA256_DIGEST_LENGTH); sha256_final(&ctx->c_out, digest); } const void *hmac_sha256(const void *key, size_t key_length, const void *data, size_t len, void *digest) { hmac_context_t ctx; hmac_sha256_init(&ctx, key, key_length); hmac_sha256_update(&ctx,data, len); hmac_sha256_final(&ctx, digest); return digest; } /** * @brief helper to compute sha256 inplace for the given buffer * * @param[in, out] element the buffer to compute a sha256 and store it back to it * */ static inline void sha256_inplace(unsigned char element[SHA256_DIGEST_LENGTH]) { sha256_context_t ctx; sha256_init(&ctx); sha2xx_update(&ctx, element, SHA256_DIGEST_LENGTH); sha256_final(&ctx, element); } void *sha256_chain(const void *seed, size_t seed_length, size_t elements, void *tail_element) { unsigned char tmp_element[SHA256_DIGEST_LENGTH]; /* assert if no sha256-chain can be created */ assert(elements >= 2); /* 1st iteration */ sha256(seed, seed_length, tmp_element); /* perform consecutive iterations minus the first one */ for (size_t i = 0; i < (elements - 1); ++i) { sha256_inplace(tmp_element); } /* store the result */ memcpy(tail_element, tmp_element, SHA256_DIGEST_LENGTH); return tail_element; } void *sha256_chain_with_waypoints(const void *seed, size_t seed_length, size_t elements, void *tail_element, sha256_chain_idx_elm_t *waypoints, size_t *waypoints_length) { /* assert if no sha256-chain can be created */ assert(elements >= 2); /* assert to prevent division by 0 */ assert(*waypoints_length > 0); /* assert if no waypoints can be created */ assert(*waypoints_length > 1); /* if we have enough space we store the whole chain */ if (*waypoints_length >= elements) { /* 1st iteration */ sha256(seed, seed_length, waypoints[0].element); waypoints[0].index = 0; /* perform consecutive iterations starting at index 1*/ for (size_t i = 1; i < elements; ++i) { sha256_context_t ctx; sha256_init(&ctx); sha2xx_update(&ctx, waypoints[(i - 1)].element, SHA256_DIGEST_LENGTH); sha256_final(&ctx, waypoints[i].element); waypoints[i].index = i; } /* store the result */ memcpy(tail_element, waypoints[(elements - 1)].element, SHA256_DIGEST_LENGTH); *waypoints_length = (elements - 1); return tail_element; } else { unsigned char tmp_element[SHA256_DIGEST_LENGTH]; size_t waypoint_streak = (elements / *waypoints_length); /* 1st waypoint iteration */ sha256(seed, seed_length, tmp_element); for (size_t i = 1; i < waypoint_streak; ++i) { sha256_inplace(tmp_element); } memcpy(waypoints[0].element, tmp_element, SHA256_DIGEST_LENGTH); waypoints[0].index = (waypoint_streak - 1); /* index of the current computed element in the chain */ size_t index = (waypoint_streak - 1); /* consecutive waypoint iterations */ size_t j = 1; for (; j < *waypoints_length; ++j) { for (size_t i = 0; i < waypoint_streak; ++i) { sha256_inplace(tmp_element); index++; } memcpy(waypoints[j].element, tmp_element, SHA256_DIGEST_LENGTH); waypoints[j].index = index; } /* store/pass the last used index in the waypoint array */ *waypoints_length = (j - 1); /* remaining iterations down to elements */ for (size_t i = index; i < (elements - 1); ++i) { sha256_inplace(tmp_element); } /* store the result */ memcpy(tail_element, tmp_element, SHA256_DIGEST_LENGTH); return tail_element; } } int sha256_chain_verify_element(void *element, size_t element_index, void *tail_element, size_t chain_length) { unsigned char tmp_element[SHA256_DIGEST_LENGTH]; int delta_count = (chain_length - element_index); /* assert if we have an index mismatch */ assert(delta_count >= 1); memcpy((void *)tmp_element, element, SHA256_DIGEST_LENGTH); /* perform all consecutive iterations down to tail_element */ for (int i = 0; i < (delta_count - 1); ++i) { sha256_inplace(tmp_element); } /* return if the computed element equals the tail_element */ return (memcmp(tmp_element, tail_element, SHA256_DIGEST_LENGTH) != 0); }