/* * Copyright (C) 2016 Inria * * This file is subject to the terms and conditions of the GNU Lesser * General Public License v2.1. See the file LICENSE in the top level * directory for more details. */ /** * @ingroup drivers_bmp180 * @{ * * @file * @brief Device driver implementation for the BMP180/BMP085 temperature and pressure sensor. * * @author Alexandre Abadie * * @} */ #include #include "log.h" #include "bmp180.h" #include "bmp180_internals.h" #include "bmp180_params.h" #include "periph/i2c.h" #include "ztimer.h" #define ENABLE_DEBUG 0 #include "debug.h" #define DEV_I2C (dev->params.i2c_dev) #define DEV_ADDR (dev->params.i2c_addr) #define OVERSAMPLING (dev->params.oversampling) /* Internal function prototypes */ static int _read_ut(const bmp180_t *dev, int32_t *ut); static int _read_up(const bmp180_t *dev, int32_t *up); static int _compute_b5(const bmp180_t *dev, int32_t ut, int32_t *b5); /*---------------------------------------------------------------------------* * BMP180 Core API * *---------------------------------------------------------------------------*/ int bmp180_init(bmp180_t *dev, const bmp180_params_t *params) { dev->params = *params; /* Clamp oversampling mode */ if (OVERSAMPLING > BMP180_ULTRAHIGHRES) { OVERSAMPLING = BMP180_ULTRAHIGHRES; } /* Acquire exclusive access */ i2c_acquire(DEV_I2C); /* Check sensor ID */ uint8_t checkid; i2c_read_reg(DEV_I2C, DEV_ADDR, BMP180_REGISTER_ID, &checkid, 0); if (checkid != 0x55) { DEBUG("[Error] Wrong device ID\n"); i2c_release(DEV_I2C); return -BMP180_ERR_NODEV; } /* adding delay before reading calibration values to avoid timing issues */ ztimer_sleep(ZTIMER_MSEC, BMP180_ULTRALOWPOWER_DELAY_MS); uint8_t buffer[22] = {0}; /* Read calibration values, using contiguous register addresses */ if (i2c_read_regs(DEV_I2C, DEV_ADDR, BMP180_CALIBRATION_AC1, buffer, 22, 0) < 0) { DEBUG("[Error] Cannot read calibration registers.\n"); i2c_release(DEV_I2C); return -BMP180_ERR_NOCAL; } dev->calibration.ac1 = (int16_t)(buffer[0] << 8) | buffer[1]; dev->calibration.ac2 = (int16_t)(buffer[2] << 8) | buffer[3]; dev->calibration.ac3 = (int16_t)(buffer[4] << 8) | buffer[4]; dev->calibration.ac4 = (uint16_t)(buffer[6] << 8) | buffer[7]; dev->calibration.ac5 = (uint16_t)(buffer[8] << 8) | buffer[9]; dev->calibration.ac6 = (uint16_t)(buffer[10] << 8) | buffer[11]; dev->calibration.b1 = (int16_t)(buffer[12] << 8) | buffer[13]; dev->calibration.b2 = (int16_t)(buffer[14] << 8) | buffer[15]; dev->calibration.mb = (int16_t)(buffer[16] << 8) | buffer[17]; dev->calibration.mc = (int16_t)(buffer[18] << 8) | buffer[19]; dev->calibration.md = (int16_t)(buffer[20] << 8) | buffer[21]; /* Release I2C device */ i2c_release(DEV_I2C); DEBUG("AC1: %i\n", (int)dev->calibration.ac1); DEBUG("AC2: %i\n", (int)dev->calibration.ac2); DEBUG("AC3: %i\n", (int)dev->calibration.ac3); DEBUG("AC4: %i\n", (int)dev->calibration.ac4); DEBUG("AC5: %i\n", (int)dev->calibration.ac5); DEBUG("AC6: %i\n", (int)dev->calibration.ac6); DEBUG("B1: %i\n", (int)dev->calibration.b1); DEBUG("B2: %i\n", (int)dev->calibration.b2); DEBUG("MB: %i\n", (int)dev->calibration.mb); DEBUG("MC: %i\n", (int)dev->calibration.mc); DEBUG("MD: %i\n", (int)dev->calibration.md); return 0; } int16_t bmp180_read_temperature(const bmp180_t *dev) { int32_t ut = 0, b5; /* Acquire exclusive access */ i2c_acquire(DEV_I2C); /* Read uncompensated value */ _read_ut(dev, &ut); /* Release I2C device */ i2c_release(DEV_I2C); /* Compute true temperature value following datasheet formulas */ _compute_b5(dev, ut, &b5); return (int16_t)((b5 + 8) >> 4); } uint32_t bmp180_read_pressure(const bmp180_t *dev) { int32_t ut = 0, up = 0, x1, x2, x3, b3, b5, b6, p; uint32_t b4, b7; /* Acquire exclusive access */ i2c_acquire(DEV_I2C); /* Read uncompensated values: first temperature, second pressure */ _read_ut(dev, &ut); _read_up(dev, &up); /* release I2C device */ i2c_release(DEV_I2C); /* Compute true pressure value following datasheet formulas */ _compute_b5(dev, ut, &b5); b6 = b5 - 4000; x1 = ((int32_t)dev->calibration.b2 * ((b6 * b6) >> 12)) >> 11; x2 = ((int32_t)dev->calibration.ac2 * b6) >> 11; x3 = x1 + x2; b3 = ((((int32_t)dev->calibration.ac1*4 + x3) << OVERSAMPLING) + 2) >> 2; x1 = ((int32_t)dev->calibration.ac3 * b6) >> 13; x2 = ((int32_t)dev->calibration.b1 * (b6 * b6) >> 12) >> 16; x3 = ((x1 + x2) + 2) >> 2; b4 = ((uint32_t)dev->calibration.ac4 * (uint32_t)(x3 + 32768)) >> 15; b7 = (uint32_t)(up - b3) * (uint32_t)(50000UL >> OVERSAMPLING); if (b7 < 0x80000000) { p = (b7 * 2) / b4; } else { p = (b7 / b4) * 2; } x1 = (p >> 8) * (p >> 8); x1 = (x1 * 3038) >> 16; x2 = (-7357 * p) >> 16; return (uint32_t)(p + ((x1 + x2 + 3791) >> 4)); } int16_t bmp180_altitude(const bmp180_t *dev, uint32_t pressure_0) { uint32_t p = bmp180_read_pressure(dev); return (int16_t)(44330.0 * (1.0 - pow((double)p / pressure_0, 0.1903)));; } uint32_t bmp180_sealevel_pressure(const bmp180_t *dev, int16_t altitude) { uint32_t p = bmp180_read_pressure(dev); return (uint32_t)((double)p / pow(1.0 - (altitude / 44330.0), 5.255));; } /*------------------------------------------------------------------------------------*/ /* Internal functions */ /*------------------------------------------------------------------------------------*/ static int _read_ut(const bmp180_t *dev, int32_t *output) { /* Read UT (Uncompsensated Temperature value) */ uint8_t ut[2] = {0}; uint8_t control[2] = { BMP180_REGISTER_CONTROL, BMP180_TEMPERATURE_COMMAND }; i2c_write_bytes(DEV_I2C, DEV_ADDR, control, 2, 0); ztimer_sleep(ZTIMER_MSEC, BMP180_ULTRALOWPOWER_DELAY_MS); if (i2c_read_regs(DEV_I2C, DEV_ADDR, BMP180_REGISTER_DATA, ut, 2, 0) < 0) { DEBUG("[Error] Cannot read uncompensated temperature.\n"); i2c_release(DEV_I2C); return -1; } *output = ((uint16_t)ut[0] << 8) | ut[1]; DEBUG("UT: %i\n", (int)*output); return 0; } static int _read_up(const bmp180_t *dev, int32_t *output) { /* Read UP (Uncompsensated Pressure value) */ uint8_t up[3] = {0}; uint8_t control[2] = { BMP180_REGISTER_CONTROL, BMP180_PRESSURE_COMMAND | (OVERSAMPLING & 0x3) << 6 }; i2c_write_bytes(DEV_I2C, DEV_ADDR, control, 2, 0); switch (OVERSAMPLING) { case BMP180_ULTRALOWPOWER: ztimer_sleep(ZTIMER_MSEC, BMP180_ULTRALOWPOWER_DELAY_MS); break; case BMP180_STANDARD: ztimer_sleep(ZTIMER_MSEC, BMP180_STANDARD_DELAY_MS); break; case BMP180_HIGHRES: ztimer_sleep(ZTIMER_MSEC, BMP180_HIGHRES_DELAY_MS); break; case BMP180_ULTRAHIGHRES: ztimer_sleep(ZTIMER_MSEC, BMP180_ULTRAHIGHRES_DELAY_MS); break; default: ztimer_sleep(ZTIMER_MSEC, BMP180_ULTRALOWPOWER_DELAY_MS); break; } if (i2c_read_regs(DEV_I2C, DEV_ADDR, BMP180_REGISTER_DATA, up, 3, 0) < 0) { DEBUG("[Error] Cannot read uncompensated pressure.\n"); i2c_release(DEV_I2C); return -1; } *output = (((uint32_t)up[0] << 16) | ((uint32_t)up[1] << 8) | up[2]) >> (8 - OVERSAMPLING); DEBUG("UP: %i\n", (int)*output); return 0; } static int _compute_b5(const bmp180_t *dev, int32_t ut, int32_t *output) { int32_t x1 = 0, x2 = 0; x1 = (((int32_t)ut - (int32_t)dev->calibration.ac6) * (int32_t)dev->calibration.ac5) >> 15; x2 = ((int32_t)dev->calibration.mc << 11) / (x1 + dev->calibration.md); *output = x1 + x2; return 0; }