/* * Copyright (C) 2020 Gunar Schorcht * * This file is subject to the terms and conditions of the GNU Lesser * General Public License v2.1. See the file LICENSE in the top level * directory for more details. */ /** * @ingroup cpu_esp32 * @ingroup drivers_periph_rtt * @{ * * @file * @brief Low-level RTT driver implementation for ESP32 * * @author Gunar Schorcht * * @} */ /* RIOT headers have to be included before ESP-IDF headers! */ #include "cpu.h" #include "esp/common_macros.h" #include "esp_common.h" #include "irq_arch.h" #include "log.h" #include "periph/rtt.h" #include "rtt_arch.h" #include "syscalls.h" #include "timex.h" /* ESP-IDF headers */ #include "esp_attr.h" #include "esp_sleep.h" #include "hal/interrupt_controller_types.h" #include "hal/interrupt_controller_ll.h" #include "rom/ets_sys.h" #include "soc/periph_defs.h" #include "soc/rtc_cntl_struct.h" #if __xtensa__ #include "soc/dport_reg.h" #include "xtensa/xtensa_api.h" #endif #define ENABLE_DEBUG 0 #include "debug.h" #define RTC_CLK_CAL_FRACT 19 /* fractional bits of calibration value */ typedef struct { uint32_t alarm_set; /**< alarm set at interface */ rtt_cb_t alarm_cb; /**< alarm callback */ void *alarm_arg; /**< argument for alarm callback */ } _rtc_alarm_t; static _rtc_alarm_t _rtc_alarm; /* we can't include soc/rtc.h because of rtc_init declaration conflicts */ extern uint32_t esp_clk_slowclk_cal_get(void); /* convert hardware counter to 32-bit RTT counter */ uint32_t _rtt_hw_to_rtt_counter(uint32_t hw_counter); static void IRAM _rtc_isr(void *arg); /* converts a 48-bit RTC counter value to microseconds */ uint64_t _rtc_counter_to_us(uint64_t raw) { const uint32_t cal = esp_clk_slowclk_cal_get(); return ((((raw >> 32) * cal) << (32 - RTC_CLK_CAL_FRACT)) + /* high part */ (((raw & 0xffffffff) * cal) >> RTC_CLK_CAL_FRACT)); /* low part */ } static void _rtc_init(void) { } static void _rtc_poweron(void) { /* route all interrupt sources to the same RTT level type interrupt */ intr_matrix_set(PRO_CPU_NUM, ETS_RTC_CORE_INTR_SOURCE, CPU_INUM_RTT); /* set interrupt handler and enable the CPU interrupt */ intr_cntrl_ll_set_int_handler(CPU_INUM_RTT, _rtc_isr, NULL); intr_cntrl_ll_enable_interrupts(BIT(CPU_INUM_RTT)); } static void _rtc_poweroff(void) { /* reset interrupt handler and disable the CPU interrupt */ intr_cntrl_ll_disable_interrupts(BIT(CPU_INUM_RTT)); intr_cntrl_ll_set_int_handler(CPU_INUM_RTT, NULL, NULL); } uint64_t _rtc_get_counter(void) { /* trigger timer register update */ RTCCNTL.time_update.update = 1; #if defined(MCU_ESP32) /* wait until values in registers are valid */ while (!RTCCNTL.time_update.valid) { ets_delay_us(1); } /* read the time from 48-bit counter and return */ return (((uint64_t)RTCCNTL.time1.val) << 32) + RTCCNTL.time0; #elif defined(MCU_ESP32C3) /* read the time from 48-bit counter and return */ return (((uint64_t)RTCCNTL.time_high0.val) << 32) + RTCCNTL.time_low0; #else #error "MCU implementation is missing" #endif } static void _rtc_set_alarm(uint32_t alarm, rtt_cb_t cb, void *arg) { /* compute the time difference for 32.768 kHz as 32-bit value */ uint64_t rtc_counter = _rtc_get_counter(); uint32_t rtt_diff = alarm - rtc_counter; /* use computed time difference directly to set the RTC counter alarm */ uint64_t rtc_alarm = (rtc_counter + rtt_diff) & RTT_HW_COUNTER_MAX; DEBUG("%s alarm=%" PRIu32 " rtt_diff=%" PRIu32 " rtc_alarm=%" PRIu64 " @rtc=%" PRIu64 "\n", __func__, alarm, rtt_diff, rtc_alarm, rtc_counter); /* save the alarm configuration for interrupt handling */ _rtc_alarm.alarm_set = alarm; _rtc_alarm.alarm_cb = cb; _rtc_alarm.alarm_arg = arg; /* set the timer value */ RTCCNTL.slp_timer0 = rtc_alarm & 0xffffffff; RTCCNTL.slp_timer1.slp_val_hi = rtc_alarm >> 32; #if __xtensa__ DEBUG("%s %08x%08x \n", __func__, RTCCNTL.slp_timer1.slp_val_hi, RTCCNTL.slp_timer0); #else DEBUG("%s %08x%08x \n", __func__, (unsigned)RTCCNTL.slp_timer1.slp_val_hi, (unsigned)RTCCNTL.slp_timer0); #endif /* enable RTC timer alarm */ RTCCNTL.slp_timer1.main_timer_alarm_en = 1; /* clear and enable RTC timer interrupt */ RTCCNTL.int_clr.rtc_main_timer = 1; RTCCNTL.int_ena.rtc_main_timer = 1; } static void _rtc_clear_alarm(void) { /* disable alarms first */ RTCCNTL.slp_timer1.main_timer_alarm_en = 0; /* clear the bit in interrupt enable and status register */ RTCCNTL.int_clr.rtc_main_timer = 0; RTCCNTL.int_ena.rtc_main_timer = 0; /* reset the alarm configuration for interrupt handling */ _rtc_alarm.alarm_set = 0; _rtc_alarm.alarm_cb = NULL; _rtc_alarm.alarm_arg = NULL; } static void _rtc_save_counter(void) { } static void _rtc_restore_counter(bool in_init) { (void)in_init; } static void IRAM _rtc_isr(void *arg) { /* disable alarms first */ RTCCNTL.slp_timer1.main_timer_alarm_en = 0; /* clear the bit in interrupt enable and status register */ RTCCNTL.int_clr.rtc_main_timer = 0; RTCCNTL.int_ena.rtc_main_timer = 0; /* save the lower 32 bit of the current counter value */ uint32_t counter = _rtc_get_counter(); DEBUG("%s %" PRIu32 "\n", __func__, counter); if (_rtc_alarm.alarm_cb) { DEBUG("%s alarm %" PRIu32 "\n", __func__, counter); rtt_cb_t alarm_cb = _rtc_alarm.alarm_cb; void *alarm_arg = _rtc_alarm.alarm_arg; /* clear the alarm first */ _rtc_alarm.alarm_cb = NULL; _rtc_alarm.alarm_arg = NULL; /* call the alarm handler afterwards if callback was defined */ alarm_cb(alarm_arg); } } const rtt_hw_driver_t _rtt_hw_rtc_driver = { .init = _rtc_init, .get_counter = _rtc_get_counter, .set_alarm = _rtc_set_alarm, .clear_alarm = _rtc_clear_alarm, .poweron = _rtc_poweron, .poweroff = _rtc_poweroff, .save_counter = _rtc_save_counter, .restore_counter = _rtc_restore_counter, };