/* * Copyright (C) 2018 Gunar Schorcht * * This file is subject to the terms and conditions of the GNU Lesser * General Public License v2.1. See the file LICENSE in the top level * directory for more details. */ /** * @ingroup cpu_esp32 * @ingroup drivers_periph_uart * @{ * * @file * @brief Low-level UART driver implementation * * @author Gunar Schorcht * * @} */ #define ENABLE_DEBUG (0) #include "debug.h" #include "esp_common.h" #include "cpu.h" #include "irq_arch.h" #include "log.h" #include "sched.h" #include "thread.h" #include "periph/gpio.h" #include "periph/uart.h" #include "gpio_arch.h" #include "driver/periph_ctrl.h" #include "esp/common_macros.h" #include "rom/ets_sys.h" #include "soc/gpio_reg.h" #include "soc/gpio_sig_map.h" #include "soc/gpio_struct.h" #include "soc/rtc.h" #include "soc/uart_reg.h" #include "soc/uart_struct.h" #include "xtensa/xtensa_api.h" #undef UART_CLK_FREQ #define UART_CLK_FREQ rtc_clk_apb_freq_get() /* APB_CLK is used */ struct uart_hw_t { uart_dev_t* regs; /* pointer to register data struct of the UART device */ uint8_t pin_txd; /* TxD pin */ uint8_t pin_rxd; /* RxD pin */ uint8_t signal_txd; /* TxD signal from the controller */ uint8_t signal_rxd; /* RxD signal to the controller */ uint32_t baudrate; /* used baudrate */ bool used; /* indicates whether UART is used */ uint8_t int_src; /* peripheral interrupt source used by the UART device */ uart_isr_ctx_t isr_ctx; /* callback functions */ }; /* hardware ressources */ static struct uart_hw_t __uarts[] = { { .regs = &UART0, .pin_txd = GPIO1, .pin_rxd = GPIO3, .signal_txd = U0TXD_OUT_IDX, .signal_rxd = U0RXD_IN_IDX, .baudrate = STDIO_UART_BAUDRATE, .used = false, .int_src = ETS_UART0_INTR_SOURCE }, #if defined(UART1_TXD) && defined(UART1_RXD) { .regs = &UART1, .pin_txd = UART1_TXD, .pin_rxd = UART1_RXD, .signal_txd = U1TXD_OUT_IDX, .signal_rxd = U1RXD_IN_IDX, .baudrate = STDIO_UART_BAUDRATE, .used = false, .int_src = ETS_UART1_INTR_SOURCE }, #endif #if defined(UART2_TXD) && defined(UART2_RXD) { .regs = &UART2, .pin_txd = UART2_TXD, .pin_rxd = UART2_RXD, .signal_txd = U2TXD_OUT_IDX, .signal_rxd = U2RXD_IN_IDX, .baudrate = STDIO_UART_BAUDRATE, .used = false, .int_src = ETS_UART2_INTR_SOURCE } #endif }; /* declaration of external functions */ extern void uart_div_modify(uint8_t uart_no, uint32_t div); /* forward declaration of internal functions */ static uint8_t IRAM __uart_rx_one_char (uart_t uart); static void __uart_tx_one_char(uart_t uart, uint8_t data); static void __uart_intr_enable (uart_t uart); static void IRAM __uart_intr_handler (void *para); void __uart_config (uart_t uart) { CHECK_PARAM (uart < UART_NUMOF); /* setup the baudrate */ if (uart == UART_DEV(0) || uart == UART_DEV(1)) { /* for UART0 and UART1, we can us the ROM function */ uart_div_modify(uart, (UART_CLK_FREQ << 4) / __uarts[uart].baudrate); } else { /* for UART2, we have to control it by registers */ __uarts[uart].regs->conf0.tick_ref_always_on = 1; /* use APB_CLK */ /* compute and set the integral and the decimal part */ uint32_t clk = (UART_CLK_FREQ << 4) / __uarts[uart].baudrate; __uarts[uart].regs->clk_div.div_int = clk >> 4; __uarts[uart].regs->clk_div.div_frag = clk & 0xf; } /* set 8 data bits */ __uarts[uart].regs->conf0.bit_num = 3; /* reset the FIFOs */ __uarts[uart].regs->conf0.rxfifo_rst = 1; __uarts[uart].regs->conf0.rxfifo_rst = 0; __uarts[uart].regs->conf0.txfifo_rst = 1; __uarts[uart].regs->conf0.txfifo_rst = 0; if (__uarts[uart].isr_ctx.rx_cb) { /* since reading can only be done byte by byte, we set UART_RXFIFO_FULL_THRHD interrupt level to 1 byte */ __uarts[uart].regs->conf1.rxfifo_full_thrhd = 1; /* enable the RX FIFO FULL interrupt */ __uart_intr_enable (uart); /* route all UART interrupt sources to same the CPU interrupt */ intr_matrix_set(PRO_CPU_NUM, __uarts[uart].int_src, CPU_INUM_UART); /* we have to enable therefore the CPU interrupt here */ xt_set_interrupt_handler(CPU_INUM_UART, __uart_intr_handler, NULL); xt_ints_on(BIT(CPU_INUM_UART)); } } int uart_init(uart_t uart, uint32_t baudrate, uart_rx_cb_t rx_cb, void *arg) { DEBUG("%s uart=%d, rate=%d, rx_cb=%p, arg=%p\n", __func__, uart, baudrate, rx_cb, arg); CHECK_PARAM_RET (uart < UART_NUMOF, -1); /* UART1 and UART2 have configurable pins */ if (uart == UART_DEV(1) || uart == UART_DEV(2)) { /* reset the pins when they were already used as UART pins */ if (gpio_get_pin_usage(__uarts[uart].pin_txd) == _UART) { gpio_set_pin_usage(__uarts[uart].pin_txd, _GPIO); } if (gpio_get_pin_usage(__uarts[uart].pin_rxd) == _UART) { gpio_set_pin_usage(__uarts[uart].pin_rxd, _GPIO); } /* try to initialize the pins as GPIOs first */ if (gpio_init (__uarts[uart].pin_txd, GPIO_OUT) || gpio_init (__uarts[uart].pin_rxd, GPIO_IN)) { return -1; } /* store the usage type in GPIO table */ gpio_set_pin_usage(__uarts[uart].pin_txd, _UART); gpio_set_pin_usage(__uarts[uart].pin_rxd, _UART); /* connect TxD pin to the TxD output signal through the GPIO matrix */ GPIO.func_out_sel_cfg[__uarts[uart].pin_txd].func_sel = __uarts[uart].signal_txd; /* connect RxD input signal to the RxD pin through the GPIO matrix */ GPIO.func_in_sel_cfg[__uarts[uart].signal_rxd].sig_in_sel = 1; GPIO.func_in_sel_cfg[__uarts[uart].signal_rxd].sig_in_inv = 0; GPIO.func_in_sel_cfg[__uarts[uart].signal_rxd].func_sel = __uarts[uart].pin_rxd; } __uarts[uart].baudrate = baudrate; /* register interrupt context */ __uarts[uart].isr_ctx.rx_cb = rx_cb; __uarts[uart].isr_ctx.arg = arg; /* enable and configure the according UART module */ uart_poweron(uart); return UART_OK; } void uart_write(uart_t uart, const uint8_t *data, size_t len) { CHECK_PARAM (uart < UART_NUMOF); for (size_t i = 0; i < len; i++) { __uart_tx_one_char(uart, data[i]); } } void uart_poweron (uart_t uart) { switch (uart) { #if UART_NUMOF case 0: periph_module_enable(PERIPH_UART0_MODULE); __uart_config(uart); break; #endif #if UART_NUMOF > 1 case 1: periph_module_enable(PERIPH_UART1_MODULE); __uart_config(uart); break; #endif #if UART_NUMOF > 2 case 2: periph_module_enable(PERIPH_UART2_MODULE); __uart_config(uart); break; #endif default: break; } } void uart_poweroff (uart_t uart) { switch (uart) { #if UART_NUMOF case 0: periph_module_disable(PERIPH_UART0_MODULE); break; #endif #if UART_NUMOF > 1 case 1: periph_module_disable(PERIPH_UART1_MODULE); break; #endif #if UART_NUMOF > 2 case 2: periph_module_disable(PERIPH_UART2_MODULE); break; #endif default: break; } } void IRAM __uart_intr_handler (void *arg) { /* to satisfy the compiler */ (void)arg; irq_isr_enter (); /* UART0, UART1, UART2 peripheral interrupt sources are routed to the same interrupt, so we have to use the status to distinguish interruptees */ for (unsigned uart = 0; uart < UART_NUMOF; uart++) { if (__uarts[uart].used) { DEBUG("%s uart=%d int_st=%08x\n", __func__, uart, __uarts[uart].regs->int_st.val); if (__uarts[uart].used && __uarts[uart].regs->int_st.rxfifo_full) { /* read one byte of data */ uint8_t data = __uart_rx_one_char (uart); /* if registered, call the RX callback function */ if (__uarts[uart].isr_ctx.rx_cb) { __uarts[uart].isr_ctx.rx_cb(__uarts[uart].isr_ctx.arg, data); } /* clear interrupt flag */ __uarts[uart].regs->int_clr.rxfifo_full = 1; } /* TODO handle other types of interrupts, for the moment just clear them */ __uarts[uart].regs->int_clr.val = ~0x0; } } irq_isr_exit (); } /* RX/TX FIFO capacity is 128 byte */ #define UART_FIFO_MAX 127 /* receive one data byte with wait */ static uint8_t IRAM __uart_rx_one_char (uart_t uart) { /* wait until at least von byte is in RX FIFO */ while (!__uarts[uart].regs->status.rxfifo_cnt) {} /* read the lowest byte from RX FIFO register */ return __uarts[uart].regs->fifo.rw_byte; } /* send one data byte with wait */ static void __uart_tx_one_char(uart_t uart, uint8_t data) { /* wait until at least one byte is avaiable in the TX FIFO */ while (__uarts[uart].regs->status.txfifo_cnt >= UART_FIFO_MAX) {} /* send the byte by placing it in the TX FIFO using MPU */ WRITE_PERI_REG(UART_FIFO_AHB_REG(uart), data); } static void __uart_intr_enable(uart_t uart) { __uarts[uart].regs->int_ena.rxfifo_full = 1; __uarts[uart].regs->int_clr.rxfifo_full = 1; __uarts[uart].used = true; DEBUG("%s %08x\n", __func__, __uarts[uart].regs->int_ena.val); } /* systemwide UART initializations */ void uart_system_init (void) { for (unsigned uart = 0; uart < UART_NUMOF; uart++) { /* reset all UART interrupt status registers */ __uarts[uart].regs->int_clr.val = ~0; } } void uart_print_config(void) { for (unsigned uart = 0; uart < UART_NUMOF; uart++) { ets_printf("\tUART_DEV(%d)\ttxd=%d rxd=%d\n", uart, __uarts[uart].pin_txd, __uarts[uart].pin_rxd); } } int uart_set_baudrate(uart_t uart, uint32_t baudrate) { DEBUG("%s uart=%d, rate=%d\n", __func__, uart, baudrate); CHECK_PARAM_RET (uart < UART_NUMOF, -1); /* use APB_CLK */ __uarts[uart].regs->conf0.tick_ref_always_on = 1; /* compute and set the integral and the decimal part */ uint32_t clk = (UART_CLK_FREQ << 4) / baudrate; __uarts[uart].regs->clk_div.div_int = clk >> 4; __uarts[uart].regs->clk_div.div_frag = clk & 0xf; return UART_OK; }