/* * Copyright (C) 2014 Loci Controls Inc. * 2017 HAW Hamburg * * This file is subject to the terms and conditions of the GNU Lesser * General Public License v2.1. See the file LICENSE in the top level * directory for more details. */ /** * @ingroup cpu_cc2538 * @ingroup drivers_periph_uart * @{ * * @file * @brief Low-level UART driver implementation * * @author Ian Martin * @author Sebastian Meiling * @} */ #include #include "board.h" #include "cpu.h" #include "periph/uart.h" #include "periph_conf.h" #undef BIT #define BIT(n) ( 1 << (n) ) enum { FIFO_LEVEL_1_8TH = 0, FIFO_LEVEL_2_8TH = 1, FIFO_LEVEL_4_8TH = 2, FIFO_LEVEL_6_8TH = 3, FIFO_LEVEL_7_8TH = 4, }; /* Valid word lengths for the LCRHbits.WLEN bit field: */ enum { WLEN_5_BITS = 0, WLEN_6_BITS = 1, WLEN_7_BITS = 2, WLEN_8_BITS = 3, }; /* Bit field definitions for the UART Line Control Register: */ #define FEN BIT( 4) /**< Enable FIFOs */ /* Bit masks for the UART Masked Interrupt Status (MIS) Register: */ #define OEMIS BIT(10) /**< UART overrun error masked status */ #define BEMIS BIT( 9) /**< UART break error masked status */ #define FEMIS BIT( 7) /**< UART framing error masked status */ #define RTMIS BIT( 6) /**< UART RX time-out masked status */ #define RXMIS BIT( 4) /**< UART RX masked interrupt status */ #define UART_CTL_HSE_VALUE 0 #define DIVFRAC_NUM_BITS 6 #define DIVFRAC_MASK ( (1 << DIVFRAC_NUM_BITS) - 1 ) /** @brief Indicates if there are bytes available in the UART0 receive FIFO */ #define uart0_rx_avail() ( UART0->cc2538_uart_fr.FRbits.RXFE == 0 ) /** @brief Indicates if there are bytes available in the UART1 receive FIFO */ #define uart1_rx_avail() ( UART1->cc2538_uart_fr.FRbits.RXFE == 0 ) /** @brief Read one byte from the UART0 receive FIFO */ #define uart0_read() ( UART0->DR ) /** @brief Read one byte from the UART1 receive FIFO */ #define uart1_read() ( UART1->DR ) /*---------------------------------------------------------------------------*/ /** * @brief Allocate memory to store the callback functions. */ static uart_isr_ctx_t uart_config[UART_NUMOF]; cc2538_uart_t * const UART0 = (cc2538_uart_t *)0x4000c000; cc2538_uart_t * const UART1 = (cc2538_uart_t *)0x4000d000; /*---------------------------------------------------------------------------*/ static void reset(cc2538_uart_t *u) { /* Make sure the UART is disabled before trying to configure it */ u->cc2538_uart_ctl.CTLbits.UARTEN = 0; u->cc2538_uart_ctl.CTLbits.RXE = 1; u->cc2538_uart_ctl.CTLbits.TXE = 1; u->cc2538_uart_ctl.CTLbits.HSE = UART_CTL_HSE_VALUE; /* Clear error status */ u->cc2538_uart_dr.ECR = 0xFF; /* Flush FIFOs by clearing LCHR.FEN */ u->cc2538_uart_lcrh.LCRH &= ~FEN; /* Restore LCHR configuration */ u->cc2538_uart_lcrh.LCRH |= FEN; /* UART Enable */ u->cc2538_uart_ctl.CTLbits.UARTEN = 1; } /*---------------------------------------------------------------------------*/ #if UART_0_EN void UART_0_ISR(void) { uint_fast16_t mis; /* Latch the Masked Interrupt Status and clear any active flags */ mis = UART_0_DEV->cc2538_uart_mis.MIS; UART_0_DEV->ICR = mis; while (UART_0_DEV->cc2538_uart_fr.FRbits.RXFE == 0) { uart_config[0].rx_cb(uart_config[0].arg, UART_0_DEV->DR); } if (mis & (OEMIS | BEMIS | FEMIS)) { /* ISR triggered due to some error condition */ reset(UART_0_DEV); } cortexm_isr_end(); } #endif /* UART_0_EN */ #if UART_1_EN void UART_1_ISR(void) { uint_fast16_t mis; /* Latch the Masked Interrupt Status and clear any active flags */ mis = UART_1_DEV->cc2538_uart_mis.MIS; UART_1_DEV->ICR = mis; while (UART_1_DEV->cc2538_uart_fr.FRbits.RXFE == 0) { uart_config[1].rx_cb(uart_config[1].arg, UART_1_DEV->DR); } if (mis & (OEMIS | BEMIS | FEMIS)) { /* ISR triggered due to some error condition */ reset(UART_1_DEV); } cortexm_isr_end(); } #endif /* UART_1_EN */ static int init_base(uart_t uart, uint32_t baudrate); int uart_init(uart_t uart, uint32_t baudrate, uart_rx_cb_t rx_cb, void *arg) { /* initialize basic functionality */ int res = init_base(uart, baudrate); if (res != UART_OK) { return res; } /* register callbacks */ uart_config[uart].rx_cb = rx_cb; uart_config[uart].arg = arg; /* configure interrupts and enable RX interrupt */ switch (uart) { #if UART_0_EN case UART_0: NVIC_SetPriority(UART0_IRQn, UART_IRQ_PRIO); NVIC_EnableIRQ(UART0_IRQn); break; #endif #if UART_1_EN case UART_1: NVIC_SetPriority(UART1_IRQn, UART_IRQ_PRIO); NVIC_EnableIRQ(UART1_IRQn); break; #endif default: return UART_NODEV; } return UART_OK; } static int init_base(uart_t uart, uint32_t baudrate) { cc2538_uart_t *u = NULL; switch (uart) { #if UART_0_EN case UART_0: u = UART_0_DEV; gpio_init_af(UART_0_RX_PIN, UART0_RXD, GPIO_IN); gpio_init_af(UART_0_TX_PIN, UART0_TXD, GPIO_OUT); break; #endif #if UART_1_EN case UART_1: u = UART_1_DEV; gpio_init_af(UART_1_RX_PIN, UART1_RXD, GPIO_IN); gpio_init_af(UART_1_TX_PIN, UART1_TXD, GPIO_OUT); break; #endif default: (void)u; return UART_NODEV; } #if UART_0_EN || UART_1_EN /* Enable clock for the UART while Running, in Sleep and Deep Sleep */ unsigned int uart_num = ( (uintptr_t)u - (uintptr_t)UART0 ) / 0x1000; SYS_CTRL_RCGCUART |= (1 << uart_num); SYS_CTRL_SCGCUART |= (1 << uart_num); SYS_CTRL_DCGCUART |= (1 << uart_num); /* Make sure the UART is disabled before trying to configure it */ u->cc2538_uart_ctl.CTL = 0; /* Run on SYS_DIV */ u->CC = 0; /* On the CC2538, hardware flow control is supported only on UART1 */ if (u == UART1) { #ifdef UART_1_RTS_PIN gpio_init_af(UART_1_RTS_PIN, UART1_RTS, GPIO_OUT); u->cc2538_uart_ctl.CTLbits.RTSEN = 1; #endif #ifdef UART_1_CTS_PIN gpio_init_af(UART_1_CTS_PIN, UART1_CTS, GPIO_IN); u->cc2538_uart_ctl.CTLbits.CTSEN = 1; #endif } /* Enable clock for the UART while Running, in Sleep and Deep Sleep */ uart_num = ( (uintptr_t)u - (uintptr_t)UART0 ) / 0x1000; SYS_CTRL_RCGCUART |= (1 << uart_num); SYS_CTRL_SCGCUART |= (1 << uart_num); SYS_CTRL_DCGCUART |= (1 << uart_num); /* * UART Interrupt Masks: * Acknowledge RX and RX Timeout * Acknowledge Framing, Overrun and Break Errors */ u->cc2538_uart_im.IM = 0; u->cc2538_uart_im.IMbits.RXIM = 1; /**< UART receive interrupt mask */ u->cc2538_uart_im.IMbits.RTIM = 1; /**< UART receive time-out interrupt mask */ u->cc2538_uart_im.IMbits.OEIM = 1; /**< UART overrun error interrupt mask */ u->cc2538_uart_im.IMbits.BEIM = 1; /**< UART break error interrupt mask */ u->cc2538_uart_im.IMbits.FEIM = 1; /**< UART framing error interrupt mask */ /* Set FIFO interrupt levels: */ u->cc2538_uart_ifls.IFLSbits.RXIFLSEL = FIFO_LEVEL_4_8TH; /**< MCU default */ u->cc2538_uart_ifls.IFLSbits.TXIFLSEL = FIFO_LEVEL_4_8TH; /**< MCU default */ u->cc2538_uart_ctl.CTLbits.RXE = 1; u->cc2538_uart_ctl.CTLbits.TXE = 1; u->cc2538_uart_ctl.CTLbits.HSE = UART_CTL_HSE_VALUE; /* Set the divisor for the baud rate generator */ uint32_t divisor = sys_clock_freq(); divisor <<= UART_CTL_HSE_VALUE + 2; divisor += baudrate / 2; /**< Avoid a rounding error */ divisor /= baudrate; u->IBRD = divisor >> DIVFRAC_NUM_BITS; u->FBRD = divisor & DIVFRAC_MASK; /* Configure line control for 8-bit, no parity, 1 stop bit and enable */ u->cc2538_uart_lcrh.LCRH = (WLEN_8_BITS << 5) | FEN; /* UART Enable */ u->cc2538_uart_ctl.CTLbits.UARTEN = 1; return UART_OK; #endif /* UART_0_EN || UART_1_EN */ } void uart_write(uart_t uart, const uint8_t *data, size_t len) { cc2538_uart_t *u; switch (uart) { #if UART_0_EN case UART_0: u = UART_0_DEV; break; #endif #if UART_1_EN case UART_1: u = UART_1_DEV; break; #endif default: return; } /* Block if the TX FIFO is full */ for (size_t i = 0; i < len; i++) { while (u->cc2538_uart_fr.FRbits.TXFF) {} u->DR = data[i]; } } void uart_poweron(uart_t uart) { (void) uart; } void uart_poweroff(uart_t uart) { (void) uart; }