/* * Copyright (C) 2013 Alaeddine Weslati * Copyright (C) 2015 Freie Universität Berlin * * This file is subject to the terms and conditions of the GNU Lesser * General Public License v2.1. See the file LICENSE in the top level * directory for more details. */ /** * @ingroup drivers_at86rf2xx * @{ * * @file * @brief Implementation of public functions for AT86RF2xx drivers * * @author Alaeddine Weslati * @author Thomas Eichinger * @author Hauke Petersen * @author Kaspar Schleiser * @author Oliver Hahm * * @} */ #include "periph/cpuid.h" #include "byteorder.h" #include "net/ieee802154.h" #include "net/gnrc.h" #include "at86rf2xx_registers.h" #include "at86rf2xx_internal.h" #include "at86rf2xx_netdev.h" #define ENABLE_DEBUG (0) #include "debug.h" static void _irq_handler(void *arg) { msg_t msg; at86rf2xx_t *dev = (at86rf2xx_t *) arg; /* tell driver thread about the interrupt */ msg.type = GNRC_NETDEV_MSG_TYPE_EVENT; msg_send(&msg, dev->mac_pid); } int at86rf2xx_init(at86rf2xx_t *dev, spi_t spi, spi_speed_t spi_speed, gpio_t cs_pin, gpio_t int_pin, gpio_t sleep_pin, gpio_t reset_pin) { dev->driver = &at86rf2xx_driver; /* initialize device descriptor */ dev->spi = spi; dev->cs_pin = cs_pin; dev->int_pin = int_pin; dev->sleep_pin = sleep_pin; dev->reset_pin = reset_pin; dev->idle_state = AT86RF2XX_STATE_TRX_OFF; dev->state = AT86RF2XX_STATE_SLEEP; /* initialise SPI */ spi_init_master(dev->spi, SPI_CONF_FIRST_RISING, spi_speed); /* initialise GPIOs */ gpio_init(dev->cs_pin, GPIO_DIR_OUT, GPIO_NOPULL); gpio_set(dev->cs_pin); gpio_init(dev->sleep_pin, GPIO_DIR_OUT, GPIO_NOPULL); gpio_clear(dev->sleep_pin); gpio_init(dev->reset_pin, GPIO_DIR_OUT, GPIO_NOPULL); gpio_set(dev->reset_pin); gpio_init_int(dev->int_pin, GPIO_NOPULL, GPIO_RISING, _irq_handler, dev); /* make sure device is not sleeping, so we can query part number */ at86rf2xx_assert_awake(dev); /* test if the SPI is set up correctly and the device is responding */ if (at86rf2xx_reg_read(dev, AT86RF2XX_REG__PART_NUM) != AT86RF2XX_PARTNUM) { DEBUG("[at86rf2xx] error: unable to read correct part number\n"); return -1; } /* reset device to default values and put it into RX state */ at86rf2xx_reset(dev); return 0; } void at86rf2xx_reset(at86rf2xx_t *dev) { #if CPUID_LEN uint8_t cpuid[CPUID_LEN]; eui64_t addr_long; #endif at86rf2xx_hardware_reset(dev); /* Reset state machine to ensure a known state */ at86rf2xx_reset_state_machine(dev); /* reset options and sequence number */ dev->seq_nr = 0; dev->options = 0; /* set short and long address */ #if CPUID_LEN cpuid_get(cpuid); #if CPUID_LEN < 8 /* in case CPUID_LEN < 8, fill missing bytes with zeros */ for (int i = CPUID_LEN; i < 8; i++) { cpuid[i] = 0; } #else for (int i = 8; i < CPUID_LEN; i++) { cpuid[i & 0x07] ^= cpuid[i]; } #endif /* make sure we mark the address as non-multicast and not globally unique */ cpuid[0] &= ~(0x01); cpuid[0] |= 0x02; /* copy and set long address */ memcpy(&addr_long, cpuid, 8); at86rf2xx_set_addr_long(dev, NTOHLL(addr_long.uint64.u64)); at86rf2xx_set_addr_short(dev, NTOHS(addr_long.uint16[0].u16)); #else at86rf2xx_set_addr_long(dev, AT86RF2XX_DEFAULT_ADDR_LONG); at86rf2xx_set_addr_short(dev, AT86RF2XX_DEFAULT_ADDR_SHORT); #endif /* set default PAN id */ at86rf2xx_set_pan(dev, AT86RF2XX_DEFAULT_PANID); /* set default channel */ at86rf2xx_set_chan(dev, AT86RF2XX_DEFAULT_CHANNEL); /* set default TX power */ at86rf2xx_set_txpower(dev, AT86RF2XX_DEFAULT_TXPOWER); /* set default options */ at86rf2xx_set_option(dev, AT86RF2XX_OPT_AUTOACK, true); at86rf2xx_set_option(dev, AT86RF2XX_OPT_CSMA, true); at86rf2xx_set_option(dev, AT86RF2XX_OPT_TELL_RX_START, false); at86rf2xx_set_option(dev, AT86RF2XX_OPT_TELL_RX_END, true); /* set default protocol */ #ifdef MODULE_GNRC_SIXLOWPAN dev->proto = GNRC_NETTYPE_SIXLOWPAN; #else dev->proto = GNRC_NETTYPE_UNDEF; #endif /* enable safe mode (protect RX FIFO until reading data starts) */ at86rf2xx_reg_write(dev, AT86RF2XX_REG__TRX_CTRL_2, AT86RF2XX_TRX_CTRL_2_MASK__RX_SAFE_MODE); #ifdef MODULE_AT86RF212B at86rf2xx_set_page(dev, 0); #endif /* don't populate masked interrupt flags to IRQ_STATUS register */ uint8_t tmp = at86rf2xx_reg_read(dev, AT86RF2XX_REG__TRX_CTRL_1); tmp &= ~(AT86RF2XX_TRX_CTRL_1_MASK__IRQ_MASK_MODE); at86rf2xx_reg_write(dev, AT86RF2XX_REG__TRX_CTRL_1, tmp); /* disable clock output to save power */ tmp = at86rf2xx_reg_read(dev, AT86RF2XX_REG__TRX_CTRL_0); tmp &= ~(AT86RF2XX_TRX_CTRL_0_MASK__CLKM_CTRL); tmp &= ~(AT86RF2XX_TRX_CTRL_0_MASK__CLKM_SHA_SEL); tmp |= (AT86RF2XX_TRX_CTRL_0_CLKM_CTRL__OFF); at86rf2xx_reg_write(dev, AT86RF2XX_REG__TRX_CTRL_0, tmp); /* enable interrupts */ at86rf2xx_reg_write(dev, AT86RF2XX_REG__IRQ_MASK, AT86RF2XX_IRQ_STATUS_MASK__TRX_END); /* clear interrupt flags */ at86rf2xx_reg_read(dev, AT86RF2XX_REG__IRQ_STATUS); /* go into RX state */ at86rf2xx_set_state(dev, AT86RF2XX_STATE_RX_AACK_ON); DEBUG("at86rf2xx_reset(): reset complete.\n"); } bool at86rf2xx_cca(at86rf2xx_t *dev) { uint8_t tmp; uint8_t status; at86rf2xx_assert_awake(dev); /* trigger CCA measurment */ tmp = at86rf2xx_reg_read(dev, AT86RF2XX_REG__PHY_CC_CCA); tmp &= AT86RF2XX_PHY_CC_CCA_MASK__CCA_REQUEST; at86rf2xx_reg_write(dev, AT86RF2XX_REG__PHY_CC_CCA, tmp); /* wait for result to be ready */ do { status = at86rf2xx_reg_read(dev, AT86RF2XX_REG__TRX_STATUS); } while (!(status & AT86RF2XX_TRX_STATUS_MASK__CCA_DONE)); /* return according to measurement */ if (status & AT86RF2XX_TRX_STATUS_MASK__CCA_STATUS) { return true; } else { return false; } } size_t at86rf2xx_send(at86rf2xx_t *dev, uint8_t *data, size_t len) { /* check data length */ if (len > AT86RF2XX_MAX_PKT_LENGTH) { DEBUG("[at86rf2xx] Error: data to send exceeds max packet size\n"); return 0; } at86rf2xx_tx_prepare(dev); at86rf2xx_tx_load(dev, data, len, 0); at86rf2xx_tx_exec(dev); return len; } void at86rf2xx_tx_prepare(at86rf2xx_t *dev) { uint8_t state; /* make sure ongoing transmissions are finished */ do { state = at86rf2xx_get_status(dev); } while (state == AT86RF2XX_STATE_BUSY_RX_AACK || state == AT86RF2XX_STATE_BUSY_TX_ARET); if (state != AT86RF2XX_STATE_TX_ARET_ON) { dev->idle_state = state; } at86rf2xx_set_state(dev, AT86RF2XX_STATE_TX_ARET_ON); dev->frame_len = IEEE802154_FCS_LEN; } size_t at86rf2xx_tx_load(at86rf2xx_t *dev, uint8_t *data, size_t len, size_t offset) { dev->frame_len += (uint8_t)len; at86rf2xx_sram_write(dev, offset + 1, data, len); return offset + len; } void at86rf2xx_tx_exec(at86rf2xx_t *dev) { /* write frame length field in FIFO */ at86rf2xx_sram_write(dev, 0, &(dev->frame_len), 1); /* trigger sending of pre-loaded frame */ at86rf2xx_reg_write(dev, AT86RF2XX_REG__TRX_STATE, AT86RF2XX_TRX_STATE__TX_START); if (dev->event_cb && (dev->options & AT86RF2XX_OPT_TELL_TX_START)) { dev->event_cb(NETDEV_EVENT_TX_STARTED, NULL); } } size_t at86rf2xx_rx_len(at86rf2xx_t *dev) { uint8_t phr; at86rf2xx_fb_read(dev, &phr, 1); /* ignore MSB (refer p.80) and substract length of FCS field */ return (size_t)((phr & 0x7f) - 2); } void at86rf2xx_rx_read(at86rf2xx_t *dev, uint8_t *data, size_t len, size_t offset) { /* when reading from SRAM, the different chips from the AT86RF2xx family * behave differently: the AT86F233, the AT86RF232 and the ATRF86212B return * frame length field (PHR) at position 0 and the first data byte at * position 1. * The AT86RF231 does not return the PHR field and return * the first data byte at position 0. */ #ifndef MODULE_AT86RF231 at86rf2xx_sram_read(dev, offset + 1, data, len); #else at86rf2xx_sram_read(dev, offset, data, len); #endif }