/* * Copyright (C) 2023 TU Dresden * * This file is subject to the terms and conditions of the GNU Lesser * General Public License v2.1. See the file LICENSE in the top level * directory for more details. */ /** * @defgroup sys_hashes_sha512_common SHA-512 common * @ingroup sys_hashes_unkeyed * @brief Implementation of common functionality for SHA-512-based hashing functions * @{ * * @file * @brief Common code for SHA-512-based hash functions * * @author Mikolai Gütschow * * @} */ #include #include #include "hashes/sha512_common.h" #ifdef __BIG_ENDIAN__ /* Copy a vector of big-endian uint32_t into a vector of bytes */ #define be64enc_vect memcpy /* Copy a vector of bytes into a vector of big-endian uint32_t */ #define be64dec_vect memcpy #else /* !__BIG_ENDIAN__ */ /* * Encode a length len/8 vector of (uint64_t) into a length len vector of * (unsigned char) in big-endian form. Assumes len is a multiple of 8. */ static void be64enc_vect(void *dst_, const void *src_, size_t len) { /* Assert if len is not a multiple of 8 */ assert(!(len & 7)); if ((uintptr_t)dst_ % sizeof(uint64_t) == 0 && (uintptr_t)src_ % sizeof(uint64_t) == 0) { uint64_t *dst = dst_; const uint64_t *src = src_; for (size_t i = 0; i < len / 8; i++) { dst[i] = __builtin_bswap64(src[i]); } } else { uint8_t *dst = dst_; const uint8_t *src = src_; for (size_t i = 0; i < len; i += 8) { dst[i] = src[i + 7]; dst[i + 1] = src[i + 6]; dst[i + 2] = src[i + 5]; dst[i + 3] = src[i + 4]; dst[i + 4] = src[i + 3]; dst[i + 5] = src[i + 2]; dst[i + 6] = src[i + 1]; dst[i + 7] = src[i]; } } } /* * Decode a big-endian length len vector of (unsigned char) into a length * len/8 vector of (uint64_t). Assumes len is a multiple of 8. */ #define be64dec_vect be64enc_vect #endif /* __BYTE_ORDER__ != __ORDER_BIG_ENDIAN__ */ /** * @brief Elementary functions used by SHA512 * @{ */ #define Ch(x, y, z) ((x & (y ^ z)) ^ z) #define Maj(x, y, z) ((x & (y | z)) | (y & z)) #define SHR(x, n) (x >> n) #define ROTR(x, n) ((x >> n) | (x << (64 - n))) #define S0(x) (ROTR(x, 28) ^ ROTR(x, 34) ^ ROTR(x, 39)) #define S1(x) (ROTR(x, 14) ^ ROTR(x, 18) ^ ROTR(x, 41)) #define s0(x) (ROTR(x, 1) ^ ROTR(x, 8) ^ SHR(x, 7)) #define s1(x) (ROTR(x, 19) ^ ROTR(x, 61) ^ SHR(x, 6)) /** @} */ /** @brief SHA-384, SHA-512, SHA-512/224 and SHA-512/256 Constants */ static const uint64_t K[80] = { 0x428a2f98d728ae22, 0x7137449123ef65cd, 0xb5c0fbcfec4d3b2f, 0xe9b5dba58189dbbc, 0x3956c25bf348b538, 0x59f111f1b605d019, 0x923f82a4af194f9b, 0xab1c5ed5da6d8118, 0xd807aa98a3030242, 0x12835b0145706fbe, 0x243185be4ee4b28c, 0x550c7dc3d5ffb4e2, 0x72be5d74f27b896f, 0x80deb1fe3b1696b1, 0x9bdc06a725c71235, 0xc19bf174cf692694, 0xe49b69c19ef14ad2, 0xefbe4786384f25e3, 0x0fc19dc68b8cd5b5, 0x240ca1cc77ac9c65, 0x2de92c6f592b0275, 0x4a7484aa6ea6e483, 0x5cb0a9dcbd41fbd4, 0x76f988da831153b5, 0x983e5152ee66dfab, 0xa831c66d2db43210, 0xb00327c898fb213f, 0xbf597fc7beef0ee4, 0xc6e00bf33da88fc2, 0xd5a79147930aa725, 0x06ca6351e003826f, 0x142929670a0e6e70, 0x27b70a8546d22ffc, 0x2e1b21385c26c926, 0x4d2c6dfc5ac42aed, 0x53380d139d95b3df, 0x650a73548baf63de, 0x766a0abb3c77b2a8, 0x81c2c92e47edaee6, 0x92722c851482353b, 0xa2bfe8a14cf10364, 0xa81a664bbc423001, 0xc24b8b70d0f89791, 0xc76c51a30654be30, 0xd192e819d6ef5218, 0xd69906245565a910, 0xf40e35855771202a, 0x106aa07032bbd1b8, 0x19a4c116b8d2d0c8, 0x1e376c085141ab53, 0x2748774cdf8eeb99, 0x34b0bcb5e19b48a8, 0x391c0cb3c5c95a63, 0x4ed8aa4ae3418acb, 0x5b9cca4f7763e373, 0x682e6ff3d6b2b8a3, 0x748f82ee5defb2fc, 0x78a5636f43172f60, 0x84c87814a1f0ab72, 0x8cc702081a6439ec, 0x90befffa23631e28, 0xa4506cebde82bde9, 0xbef9a3f7b2c67915, 0xc67178f2e372532b, 0xca273eceea26619c, 0xd186b8c721c0c207, 0xeada7dd6cde0eb1e, 0xf57d4f7fee6ed178, 0x06f067aa72176fba, 0x0a637dc5a2c898a6, 0x113f9804bef90dae, 0x1b710b35131c471b, 0x28db77f523047d84, 0x32caab7b40c72493, 0x3c9ebe0a15c9bebc, 0x431d67c49c100d4c, 0x4cc5d4becb3e42b6, 0x597f299cfc657e2a, 0x5fcb6fab3ad6faec, 0x6c44198c4a475817, }; /* * SHA512 block compression function. The 512-bit state is transformed via * the 1024-bit input block to produce a new state. */ static void sha512_transform(uint64_t *state, const unsigned char block[128]) { uint64_t W[80]; uint64_t S[8]; /* 1. Prepare message schedule W. */ be64dec_vect(W, block, 128); for (int i = 16; i < 80; i++) { W[i] = s1(W[i - 2]) + W[i - 7] + s0(W[i - 15]) + W[i - 16]; } /* 2. Initialize working variables. */ memcpy(S, state, 64); /* 3. Mix. */ for (int i = 0; i < 80; ++i) { uint64_t e = S[(84 - i) % 8], f = S[(85 - i) % 8]; uint64_t g = S[(86 - i) % 8], h = S[(87 - i) % 8]; uint64_t t0 = h + S1(e) + Ch(e, f, g) + W[i] + K[i]; uint64_t a = S[(80 - i) % 8], b = S[(81 - i) % 8]; uint64_t c = S[(82 - i) % 8], d = S[(83 - i) % 8]; uint64_t t1 = S0(a) + Maj(a, b, c); S[(83 - i) % 8] = d + t0; S[(87 - i) % 8] = t0 + t1; } /* 4. Mix local working variables into global state */ for (int i = 0; i < 8; i++) { state[i] += S[i]; } } static const unsigned char PAD[128] = { 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }; /* Add padding and terminating bit-count. */ void sha512_common_pad(sha512_common_context_t *ctx) { assert(ctx != NULL); /* * Convert length to a vector of bytes -- we do this now rather * than later because the length will change after we pad. */ unsigned char len[16]; be64enc_vect(len, ctx->count, 16); /* Add 1--128 bytes so that the resulting length is 112 mod 128 */ uint8_t r = (ctx->count[1] >> 3) & 0x7f; uint8_t plen = (r < 112) ? (112 - r) : (240 - r); sha512_common_update(ctx, PAD, (size_t) plen); /* Add the terminating bit-count */ sha512_common_update(ctx, len, 16); } /* Add bytes into the hash */ void sha512_common_update(sha512_common_context_t *ctx, const void *data, size_t len) { assert(ctx != NULL); /* Number of bytes left in the buffer from previous updates */ uint8_t r = (ctx->count[1] >> 3) & 0x7f; /* Number of bytes free in the buffer from previous updates */ uint8_t f = 128 - r; /* Convert the length into a number of bits */ uint64_t bitlen1 = ((uint64_t) len) << 3; uint64_t bitlen0 = ((uint64_t) len) >> 61; /* Update number of bits */ if ((ctx->count[1] += bitlen1) < bitlen1) { ctx->count[0]++; } ctx->count[0] += bitlen0; /* Handle the case where we don't need to perform any transforms */ if (len < f) { if (len > 0) { memcpy(&ctx->buf[r], data, len); } return; } /* Finish the current block */ const unsigned char *src = data; memcpy(&ctx->buf[r], src, f); sha512_transform(ctx->state, ctx->buf); src += f; len -= f; /* Perform complete blocks */ while (len >= 128) { sha512_transform(ctx->state, src); src += 128; len -= 128; } /* Copy left over data into buffer */ memcpy(ctx->buf, src, len); } /* * SHA-512 finalization. Pads the input data, exports the hash value, * and clears the context state. */ void sha512_common_final(sha512_common_context_t *ctx, void *dst, size_t dig_len) { assert(ctx != NULL); /* Add padding */ sha512_common_pad(ctx); /* Write the hash */ be64enc_vect(dst, ctx->state, dig_len); /* Clear the context state */ memset(ctx, 0, sizeof(*ctx)); }