/* * Copyright (C) 2014-2017 Freie Universität Berlin * 2015 Jan Wagner * 2018 Inria * * * This file is subject to the terms and conditions of the GNU Lesser * General Public License v2.1. See the file LICENSE in the top level * directory for more details. */ /** * @ingroup cpu_nrf5x_common * @ingroup drivers_periph_uart * @{ * * @file * @brief Implementation of the peripheral UART interface * * @author Christian Kühling * @author Timo Ziegler * @author Hauke Petersen * @author Jan Wagner * @author Alexandre Abadie * * @} */ #include #include #include "cpu.h" #include "periph/uart.h" #include "periph/gpio.h" #ifdef CPU_MODEL_NRF52840XXAA #define UART_INVALID (uart >= UART_NUMOF) #define REG_BAUDRATE dev(uart)->BAUDRATE #define REG_CONFIG dev(uart)->CONFIG #define PSEL_RXD dev(uart)->PSEL.RXD #define PSEL_TXD dev(uart)->PSEL.TXD #define UART_IRQN uart_config[uart].irqn #define UART_PIN_RX uart_config[uart].rx_pin #define UART_PIN_TX uart_config[uart].tx_pin #define UART_PIN_RTS uart_config[uart].rts_pin #define UART_PIN_CTS uart_config[uart].cts_pin #define UART_HWFLOWCTRL (uart_config[uart].rts_pin != (uint8_t)GPIO_UNDEF && \ uart_config[uart].cts_pin != (uint8_t)GPIO_UNDEF) #define ISR_CTX isr_ctx[uart] #define RAM_MASK (0x20000000) /** * @brief Chunk size used for transferring data from ROM [in bytes] */ #ifndef NRF_UARTE_CHUNK_SIZE #define NRF_UARTE_CHUNK_SIZE (32U) #endif /** * @brief Allocate memory for the interrupt context */ static uart_isr_ctx_t isr_ctx[UART_NUMOF]; static uint8_t rx_buf[UART_NUMOF]; static inline NRF_UARTE_Type *dev(uart_t uart) { return uart_config[uart].dev; } #else /* nrf51 and nrf52832 etc */ #define UART_INVALID (uart != 0) #define REG_BAUDRATE NRF_UART0->BAUDRATE #define REG_CONFIG NRF_UART0->CONFIG #define PSEL_RXD NRF_UART0->PSELRXD #define PSEL_TXD NRF_UART0->PSELTXD #define UART_0_ISR isr_uart0 #define ISR_CTX isr_ctx /** * @brief Allocate memory for the interrupt context */ static uart_isr_ctx_t isr_ctx; #endif /* CPU_MODEL_NRF52840XXAA */ int uart_init(uart_t uart, uint32_t baudrate, uart_rx_cb_t rx_cb, void *arg) { if (UART_INVALID) { return UART_NODEV; } /* remember callback addresses and argument */ ISR_CTX.rx_cb = rx_cb; ISR_CTX.arg = arg; #ifdef CPU_FAM_NRF51 /* power on the UART device */ NRF_UART0->POWER = 1; #endif /* reset configuration registers */ REG_CONFIG = 0; /* configure RX pin */ if (rx_cb) { gpio_init(UART_PIN_RX, GPIO_IN); PSEL_RXD = UART_PIN_RX; } /* configure TX pin */ gpio_init(UART_PIN_TX, GPIO_OUT); PSEL_TXD = UART_PIN_TX; #ifdef CPU_MODEL_NRF52840XXAA /* enable HW-flow control if defined */ if (UART_HWFLOWCTRL) { /* set pin mode for RTS and CTS pins */ gpio_init(UART_PIN_RTS, GPIO_OUT); gpio_init(UART_PIN_CTS, GPIO_IN); /* configure RTS and CTS pins to use */ dev(uart)->PSEL.RTS = UART_PIN_RTS; dev(uart)->PSEL.CTS = UART_PIN_CTS; REG_CONFIG |= UART_CONFIG_HWFC_Msk; /* enable HW flow control */ } else { dev(uart)->PSEL.RTS = 0xffffffff; /* pin disconnected */ dev(uart)->PSEL.CTS = 0xffffffff; /* pin disconnected */ } #else #if UART_HWFLOWCTRL /* set pin mode for RTS and CTS pins */ gpio_init(UART_PIN_RTS, GPIO_OUT); gpio_init(UART_PIN_CTS, GPIO_IN); /* configure RTS and CTS pins to use */ NRF_UART0->PSELRTS = UART_PIN_RTS; NRF_UART0->PSELCTS = UART_PIN_CTS; REG_CONFIG |= UART_CONFIG_HWFC_Msk; /* enable HW flow control */ #else NRF_UART0->PSELRTS = 0xffffffff; /* pin disconnected */ NRF_UART0->PSELCTS = 0xffffffff; /* pin disconnected */ #endif #endif /* select baudrate */ switch (baudrate) { case 1200: REG_BAUDRATE = UART_BAUDRATE_BAUDRATE_Baud1200; break; case 2400: REG_BAUDRATE = UART_BAUDRATE_BAUDRATE_Baud2400; break; case 4800: REG_BAUDRATE = UART_BAUDRATE_BAUDRATE_Baud4800; break; case 9600: REG_BAUDRATE = UART_BAUDRATE_BAUDRATE_Baud9600; break; case 14400: REG_BAUDRATE = UART_BAUDRATE_BAUDRATE_Baud14400; break; case 19200: REG_BAUDRATE = UART_BAUDRATE_BAUDRATE_Baud19200; break; case 28800: REG_BAUDRATE = UART_BAUDRATE_BAUDRATE_Baud28800; break; case 38400: REG_BAUDRATE = UART_BAUDRATE_BAUDRATE_Baud38400; break; case 57600: REG_BAUDRATE = UART_BAUDRATE_BAUDRATE_Baud57600; break; case 76800: REG_BAUDRATE = UART_BAUDRATE_BAUDRATE_Baud76800; break; case 115200: REG_BAUDRATE = UART_BAUDRATE_BAUDRATE_Baud115200; break; case 230400: REG_BAUDRATE = UART_BAUDRATE_BAUDRATE_Baud230400; break; case 250000: REG_BAUDRATE = UART_BAUDRATE_BAUDRATE_Baud250000; break; case 460800: REG_BAUDRATE = UART_BAUDRATE_BAUDRATE_Baud460800; break; case 921600: REG_BAUDRATE = UART_BAUDRATE_BAUDRATE_Baud921600; break; default: return UART_NOBAUD; } /* enable the UART device */ #ifdef CPU_MODEL_NRF52840XXAA dev(uart)->ENABLE = UARTE_ENABLE_ENABLE_Enabled; #else NRF_UART0->ENABLE = UART_ENABLE_ENABLE_Enabled; NRF_UART0->TASKS_STARTTX = 1; #endif if (rx_cb) { #ifdef CPU_MODEL_NRF52840XXAA dev(uart)->RXD.MAXCNT = 1; dev(uart)->RXD.PTR = (uint32_t)&rx_buf[uart]; dev(uart)->INTENSET = UARTE_INTENSET_ENDRX_Msk; dev(uart)->SHORTS |= UARTE_SHORTS_ENDRX_STARTRX_Msk; dev(uart)->TASKS_STARTRX = 1; #else NRF_UART0->INTENSET = UART_INTENSET_RXDRDY_Msk; NRF_UART0->TASKS_STARTRX = 1; #endif /* enable global and receiving interrupt */ NVIC_EnableIRQ(UART_IRQN); } return UART_OK; } #ifdef CPU_MODEL_NRF52840XXAA /* nrf52840 (using EasyDMA) */ static void _write_buf(uart_t uart, const uint8_t *data, size_t len) { /* reset endtx flag */ dev(uart)->EVENTS_ENDTX = 0; /* set data to transfer to DMA TX pointer */ dev(uart)->TXD.PTR = (uint32_t)data; dev(uart)->TXD.MAXCNT = len; /* start transmission */ dev(uart)->TASKS_STARTTX = 1; /* wait for the end of transmission */ while (dev(uart)->EVENTS_ENDTX == 0) {} } void uart_write(uart_t uart, const uint8_t *data, size_t len) { assert(uart < UART_NUMOF); /* EasyDMA can only transfer data from RAM (see ref. manual, sec. 6.34.1). * So if the given `data` buffer resides in ROM, we need to copy it to RAM * before being able to transfer it. To make sure the stack does not * overflow, we do this chunk-wise. */ if (!((uint32_t)data & RAM_MASK)) { size_t pos = 0; while (pos < len) { uint8_t tmp[NRF_UARTE_CHUNK_SIZE]; size_t off = len - pos; off = (off > NRF_UARTE_CHUNK_SIZE) ? NRF_UARTE_CHUNK_SIZE : off; memcpy(tmp, data + pos, off); _write_buf(uart, tmp, off); pos += off; } } else { _write_buf(uart, data, len); } } void uart_poweron(uart_t uart) { assert(uart < UART_NUMOF); if (isr_ctx[uart].rx_cb) { NRF_UART0->TASKS_STARTRX = 1; } } void uart_poweroff(uart_t uart) { assert(uart < UART_NUMOF); dev(uart)->TASKS_STOPRX = 1; } int uart_mode(uart_t uart, uart_data_bits_t data_bits, uart_parity_t parity, uart_stop_bits_t stop_bits) { if (stop_bits != UART_STOP_BITS_1 && stop_bits != UART_STOP_BITS_2) { return UART_NOMODE; } if (data_bits != UART_DATA_BITS_8) { return UART_NOMODE; } if (parity != UART_PARITY_NONE && parity != UART_PARITY_EVEN) { return UART_NOMODE; } if (stop_bits == UART_STOP_BITS_2) { dev(uart)->CONFIG |= UARTE_CONFIG_STOP_Msk; } else { dev(uart)->CONFIG &= ~UARTE_CONFIG_STOP_Msk; } if (parity == UART_PARITY_EVEN) { dev(uart)->CONFIG |= UARTE_CONFIG_PARITY_Msk; } else { dev(uart)->CONFIG &= ~UARTE_CONFIG_PARITY_Msk; } return UART_OK; } static inline void irq_handler(uart_t uart) { if (dev(uart)->EVENTS_ENDRX == 1) { dev(uart)->EVENTS_ENDRX = 0; /* make sure we actually received new data */ if (dev(uart)->RXD.AMOUNT == 0) { return; } /* Process received byte */ isr_ctx[uart].rx_cb(isr_ctx[uart].arg, rx_buf[uart]); } cortexm_isr_end(); } #else /* nrf51 and nrf52832 etc */ void uart_write(uart_t uart, const uint8_t *data, size_t len) { (void)uart; for (size_t i = 0; i < len; i++) { /* This section of the function is not thread safe: - another thread may mess up with the uart at the same time. In order to avoid an infinite loop in the interrupted thread, the TXRDY flag must be cleared before writing the data to be sent and not after. This way, the higher priority thread will exit this function with the TXRDY flag set, then the interrupted thread may have not transmitted his data but will still exit the while loop. */ /* reset ready flag */ NRF_UART0->EVENTS_TXDRDY = 0; /* write data into transmit register */ NRF_UART0->TXD = data[i]; /* wait for any transmission to be done */ while (NRF_UART0->EVENTS_TXDRDY == 0) {} } } void uart_poweron(uart_t uart) { (void)uart; NRF_UART0->TASKS_STARTTX = 1; if (isr_ctx.rx_cb) { NRF_UART0->TASKS_STARTRX = 1; } } void uart_poweroff(uart_t uart) { (void)uart; NRF_UART0->TASKS_SUSPEND; } int uart_mode(uart_t uart, uart_data_bits_t data_bits, uart_parity_t parity, uart_stop_bits_t stop_bits) { (void)uart; if (stop_bits != UART_STOP_BITS_1) { return UART_NOMODE; } if (data_bits != UART_DATA_BITS_8) { return UART_NOMODE; } if (parity != UART_PARITY_NONE && parity != UART_PARITY_EVEN) { return UART_NOMODE; } if (parity == UART_PARITY_EVEN) { NRF_UART0->CONFIG |= UART_CONFIG_PARITY_Msk; } else { NRF_UART0->CONFIG &= ~UART_CONFIG_PARITY_Msk; } return UART_OK; } static inline void irq_handler(uart_t uart) { (void)uart; if (NRF_UART0->EVENTS_RXDRDY == 1) { NRF_UART0->EVENTS_RXDRDY = 0; uint8_t byte = (uint8_t)(NRF_UART0->RXD & 0xff); isr_ctx.rx_cb(isr_ctx.arg, byte); } cortexm_isr_end(); } #endif /* CPU_MODEL_NRF52840XXAA */ #ifdef UART_0_ISR void UART_0_ISR(void) { irq_handler(UART_DEV(0)); } #endif #ifdef UART_1_ISR void UART_1_ISR(void) { irq_handler(UART_DEV(1)); } #endif