/* * Copyright (C) 2015 Loci Controls Inc. * 2016 Freie Universität Berlin * * This file is subject to the terms and conditions of the GNU Lesser * General Public License v2.1. See the file LICENSE in the top level * directory for more details. */ /** * @addtogroup cpu_cc2538 * @{ * * @file * @brief Low-level SPI driver implementation * * @author Ian Martin * @author Hauke Petersen * * @} */ #include "cpu.h" #include "mutex.h" #include "assert.h" #include "periph/spi.h" /** * @brief Array holding one pre-initialized mutex for each SPI device */ static mutex_t locks[SPI_NUMOF]; static inline cc2538_ssi_t *dev(spi_t bus) { return spi_config[bus].dev; } static inline void poweron(spi_t bus) { SYS_CTRL_RCGCSSI |= (1 << bus); SYS_CTRL_SCGCSSI |= (1 << bus); SYS_CTRL_DCGCSSI |= (1 << bus); } static inline void poweroff(spi_t bus) { SYS_CTRL_RCGCSSI &= ~(1 << bus); SYS_CTRL_SCGCSSI &= ~(1 << bus); SYS_CTRL_DCGCSSI &= ~(1 << bus); } void spi_init(spi_t bus) { assert(bus <= SPI_NUMOF); /* temporarily power on the device */ poweron(bus); /* configure device to be a master and disable SSI operation mode */ dev(bus)->CR1 = 0; /* configure system clock as SSI clock source */ dev(bus)->CC = SSI_SS_IODIV; /* and power off the bus again */ poweroff(bus); /* trigger SPI pin configuration */ spi_init_pins(bus); } void spi_init_pins(spi_t bus) { switch ((uintptr_t)spi_config[bus].dev) { case (uintptr_t)SSI0: IOC_PXX_SEL[spi_config[bus].mosi_pin] = SSI0_TXD; IOC_PXX_SEL[spi_config[bus].sck_pin ] = SSI0_CLKOUT; IOC_PXX_SEL[spi_config[bus].cs_pin ] = SSI0_FSSOUT; IOC_SSIRXD_SSI0 = spi_config[bus].miso_pin; break; case (uintptr_t)SSI1: IOC_PXX_SEL[spi_config[bus].mosi_pin] = SSI1_TXD; IOC_PXX_SEL[spi_config[bus].sck_pin ] = SSI1_CLKOUT; IOC_PXX_SEL[spi_config[bus].cs_pin ] = SSI1_FSSOUT; IOC_SSIRXD_SSI1 = spi_config[bus].miso_pin; break; } IOC_PXX_OVER[spi_config[bus].mosi_pin] = IOC_OVERRIDE_OE; IOC_PXX_OVER[spi_config[bus].miso_pin] = IOC_OVERRIDE_DIS; IOC_PXX_OVER[spi_config[bus].sck_pin ] = IOC_OVERRIDE_OE; IOC_PXX_OVER[spi_config[bus].cs_pin ] = IOC_OVERRIDE_OE; gpio_hardware_control(spi_config[bus].mosi_pin); gpio_hardware_control(spi_config[bus].miso_pin); gpio_hardware_control(spi_config[bus].sck_pin); gpio_hardware_control(spi_config[bus].cs_pin); } int spi_acquire(spi_t bus, spi_cs_t cs, spi_mode_t mode, spi_clk_t clk) { /* lock the bus */ mutex_lock(&locks[bus]); /* power on device */ poweron(bus); /* configure SCR clock field, data-width and mode */ dev(bus)->CR0 = 0; dev(bus)->CPSR = (spi_clk_config[clk].cpsr); dev(bus)->CR0 = ((spi_clk_config[clk].scr << 8) | mode | SSI_CR0_DSS(8)); /* enable SSI device */ dev(bus)->CR1 = SSI_CR1_SSE; return SPI_OK; } void spi_release(spi_t bus) { /* disable and power off device */ dev(bus)->CR1 = 0; poweroff(bus); /* and release lock... */ mutex_unlock(&locks[bus]); } void spi_transfer_bytes(spi_t bus, spi_cs_t cs, bool cont, const void *out, void *in, size_t len) { uint8_t *out_buf = (uint8_t *)out; uint8_t *in_buf = (uint8_t *)in; assert(out_buf || in_buf); if (cs != SPI_CS_UNDEF) { gpio_clear((gpio_t)cs); } if (!in_buf) { for (size_t i = 0; i < len; i++) { while (!(dev(bus)->SR & SSI_SR_TNF)) {} dev(bus)->DR = out_buf[i]; } /* flush RX FIFO while busy*/ while ((dev(bus)->SR & SSI_SR_BSY)) { dev(bus)->DR; } } else if (!out_buf) { /*TODO this case is currently untested */ size_t in_cnt = 0; for (size_t i = 0; i < len; i++) { while (!(dev(bus)->SR & SSI_SR_TNF)) {} dev(bus)->DR = 0; if (dev(bus)->SR & SSI_SR_RNE) { in_buf[in_cnt++] = dev(bus)->DR; } } /* get remaining bytes */ while (dev(bus)->SR & SSI_SR_RNE) { in_buf[in_cnt++] = dev(bus)->DR; } } else { for (size_t i = 0; i < len; i++) { while (!(dev(bus)->SR & SSI_SR_TNF)) {} dev(bus)->DR = out_buf[i]; while (!(dev(bus)->SR & SSI_SR_RNE)){} in_buf[i] = dev(bus)->DR; } /* wait until no more busy */ while ((dev(bus)->SR & SSI_SR_BSY)) {} } if ((!cont) && (cs != SPI_CS_UNDEF)) { gpio_set((gpio_t)cs); } }