/* * Copyright (C) 2015 Kaspar Schleiser * 2014 Freie Universität Berlin, Hinnerk van Bruinehsen * 2018 RWTH Aachen, Josua Arndt * 2021 Gerson Fernando Budke * * This file is subject to the terms and conditions of the GNU Lesser * General Public License v2.1. See the file LICENSE in the top level * directory for more details. */ /** * @ingroup cpu_avr8_common * @brief Common implementations and headers for AVR-8 family based micro-controllers * @{ * * @file * @brief Basic definitions for the AVR-8 common module * * When ever you want to do something hardware related, that is accessing MCUs registers directly, * just include this file. It will then make sure that the MCU specific headers are included. * * @author Stefan Pfeiffer * @author Hauke Petersen * @author Hinnerk van Bruinehsen * @author Kaspar Schleiser * @author Josua Arndt * @author Gerson Fernando Budke * */ #ifndef CPU_H #define CPU_H #include #include #include #include "cpu_conf.h" #include "cpu_clock.h" #include "sched.h" #include "thread.h" #ifdef __cplusplus extern "C" { #endif /** * @name Use shared I2C functions * @{ */ #define PERIPH_I2C_NEED_READ_REG #define PERIPH_I2C_NEED_WRITE_REG #define PERIPH_I2C_NEED_READ_REGS #define PERIPH_I2C_NEED_WRITE_REGS /** @} */ /** * @name Flags for the current state of the ATmega MCU * @{ */ #define AVR8_STATE_FLAG_ISR (0x80U) /**< In ISR */ #define AVR8_STATE_FLAG_UART0_TX (0x01U) /**< TX pending for UART 0 */ #define AVR8_STATE_FLAG_UART1_TX (0x02U) /**< TX pending for UART 1 */ #define AVR8_STATE_FLAG_UART2_TX (0x04U) /**< TX pending for UART 2 */ #define AVR8_STATE_FLAG_UART3_TX (0x08U) /**< TX pending for UART 3 */ #define AVR8_STATE_FLAG_UART4_TX (0x10U) /**< TX pending for UART 4 */ #define AVR8_STATE_FLAG_UART5_TX (0x20U) /**< TX pending for UART 5 */ #define AVR8_STATE_FLAG_UART6_TX (0x40U) /**< TX pending for UART 6 */ #define AVR8_STATE_FLAG_UART_TX(x) (0x01U << x) /**< TX pending for UART x */ /** @} */ /** * @brief Global variable containing the current state of the MCU * * @note This variable is updated from IRQ context; access to it should * be wrapped into @ref irq_disable and @ref irq_restore or * @ref avr8_get_state should be used. * * Contents: * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ * 7 6 5 4 3 2 1 0 * +---+---+---+---+---+---+---+---+ * |IRQ|TX6|TX5|TX4|TX3|TX2|TX1|TX0| * +---+---+---+---+---+---+---+---+ * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ * * | Label | Description | * |:-------|:--------------------------------------------------------------| * | IRQ | This bit is set when in IRQ context | * | TX6 | This bit is set when on UART6 TX is pending | * | TX5 | This bit is set when on UART5 TX is pending | * | TX4 | This bit is set when on UART4 TX is pending | * | TX3 | This bit is set when on UART3 TX is pending | * | TX2 | This bit is set when on UART2 TX is pending | * | TX1 | This bit is set when on UART1 TX is pending | * | TX0 | This bit is set when on UART0 TX is pending | */ extern uint8_t avr8_state; /** * @brief Atomically read the state (@ref avr8_state) * * This function guarantees that the read is not optimized out, not reordered * and done atomically. This does not mean that by the time return value is * processed that it still reflects the value currently stored in * @ref avr8_state. * * Using ASM rather than C11 atomics has less overhead, as not every access to * the state has to be performed atomically: Those done from ISR will not be * interrupted (no support for nested interrupts) and barriers at the begin and * end of the ISRs make sure the access takes place before IRQ context is left. */ static inline uint8_t avr8_get_state(void) { uint8_t state; __asm__ volatile( "lds %[state], avr8_state \n\t" : [state] "=r" (state) : : "memory" ); return state; } /** * @brief Run this code on entering interrupt routines */ static inline void avr8_enter_isr(void) { /* This flag is only called from IRQ context, and nested IRQs are not * supported as of now. The flag will be unset before the IRQ context is * left, so no need to use memory barriers or atomics here */ avr8_state |= AVR8_STATE_FLAG_ISR; } /** * @brief Check if TX on any present UART device is still pending * * @retval !=0 At least on UART device is still sending data out * @retval 0 No UART is currently sending data */ static inline int avr8_is_uart_tx_pending(void) { uint8_t state = avr8_get_state(); return (state & (AVR8_STATE_FLAG_UART0_TX | AVR8_STATE_FLAG_UART1_TX | AVR8_STATE_FLAG_UART2_TX | AVR8_STATE_FLAG_UART3_TX | AVR8_STATE_FLAG_UART4_TX | AVR8_STATE_FLAG_UART5_TX | AVR8_STATE_FLAG_UART6_TX)); } /** * @brief Run this code on exiting interrupt routines */ void avr8_exit_isr(void); /** * @brief Initialization of the CPU clock */ void avr8_clk_init(void); /** * @brief Print the last instruction's address */ static inline void __attribute__((always_inline)) cpu_print_last_instruction(void) { uint8_t hi; uint8_t lo; uint16_t ptr; __asm__ volatile ( "in %[hi], __SP_H__ \n\t" "in %[lo], __SP_L__ \n\t" : [hi] "=r"(hi), [lo] "=r"(lo) : /* no inputs */ : /* no clobbers */ ); ptr = hi << 8 | lo; printf("Stack Pointer: 0x%04x\n", ptr); } /** * @brief Initializes avrlibc stdio */ void avr8_stdio_init(void); /** * @brief Print reset cause */ void avr8_reset_cause(void); #ifdef __cplusplus } #endif #endif /* CPU_H */ /** @} */