/* * Copyright (C) 2020 iosabi * * This file is subject to the terms and conditions of the GNU Lesser General * Public License v2.1. See the file LICENSE in the top level directory for more * details. */ /** * @ingroup cpu_qn908x * @ingroup drivers_periph_timer * * @{ * * @file * @brief Low-level timer driver implementation * * This driver leverages the Freescale/NXP implementation distributed with the * SDK. * * @author iosabi * * @} */ #include #include "bitarithm.h" #include "board.h" #include "cpu.h" #include "periph/timer.h" #include "periph_conf.h" #include "vendor/drivers/fsl_clock.h" #define ENABLE_DEBUG 0 #include "debug.h" /** * @brief Interrupt context information for configured timers. */ static timer_isr_ctx_t isr_ctx[FSL_FEATURE_SOC_CTIMER_COUNT]; /** * @brief CTIMER peripheral base pointers. */ static CTIMER_Type* const ctimers[FSL_FEATURE_SOC_CTIMER_COUNT] = CTIMER_BASE_PTRS; /** * @brief CTIMER IRQ numbers. */ static IRQn_Type const ctimers_irqn[FSL_FEATURE_SOC_CTIMER_COUNT] = CTIMER_IRQS; /** * @brief CTIMER Clocks. */ static const clock_ip_name_t ctimers_clocks[FSL_FEATURE_SOC_CTIMER_COUNT] = CTIMER_CLOCKS; /** * @brief Check the board config to make sure we do not exceed max number of * timers */ #if TIMER_NUMOF > FSL_FEATURE_SOC_CTIMER_COUNT #error "ERROR in board timer configuration: too many timers defined" #endif uword_t timer_query_freqs_numof(tim_t dev) { assert(dev < TIMER_NUMOF); (void)dev; return 256; } uint32_t timer_query_freqs(tim_t dev, uword_t index) { assert(dev < TIMER_NUMOF); (void)dev; if (index >= UINT8_MAX) { return 0; } return CLOCK_GetFreq(kCLOCK_ApbClk) / (index + 1); } int timer_init(tim_t tim, uint32_t freq, timer_cb_t cb, void *arg) { DEBUG("timer_init(%u, %" PRIu32 ")\n", tim, freq); if (tim >= TIMER_NUMOF) { return -1; } isr_ctx[tim].cb = cb; isr_ctx[tim].arg = arg; CLOCK_EnableClock(ctimers_clocks[tim]); CTIMER_Type *dev = ctimers[tim]; /* CTIMER blocks are driven from the APB clock. */ uint32_t core_freq = CLOCK_GetFreq(kCLOCK_ApbClk); uint32_t prescale = (core_freq + freq / 2) / freq - 1; if (prescale == (uint32_t)(-1)) { DEBUG("timer_init: Frequency %" PRIu32 " is too fast for core_freq=%" PRIu32, freq, core_freq); return -1; } dev->CTCR = CTIMER_CTCR_CTMODE(0); /* timer mode */ dev->PR = CTIMER_PR_PRVAL(prescale); /* Enable timer interrupts in the NVIC. */ NVIC_EnableIRQ(ctimers_irqn[tim]); /* Timer should be started after init. */ dev->TCR |= CTIMER_TCR_CEN_MASK; return 0; } int timer_set_absolute(tim_t tim, int channel, unsigned int value) { DEBUG("timer_set_absolute(%u, %u, %u)\n", tim, channel, value); if ((tim >= TIMER_NUMOF) || (channel >= TIMER_CHANNEL_NUMOF)) { return -1; } CTIMER_Type* const dev = ctimers[tim]; dev->MR[channel] = value; dev->MCR |= (CTIMER_MCR_MR0I_MASK << (channel * 3)); return 0; } int timer_set(tim_t tim, int channel, unsigned int value) { DEBUG("timer_set(%u, %u, %u)\n", tim, channel, value); if ((tim >= TIMER_NUMOF) || (channel >= TIMER_CHANNEL_NUMOF)) { return -1; } CTIMER_Type* const dev = ctimers[tim]; /* no IRQ will be generated on value == 0, so bump it here */ value = (value != 0) ? value : 1; unsigned irq_state = irq_disable(); /* briefly pause timer */ ctimers[tim]->TCR &= ~CTIMER_TCR_CEN_MASK; /* set absolute timeout based on given value and enable IRQ */ dev->MR[channel] = dev->TC + value; dev->MCR |= (CTIMER_MCR_MR0I_MASK << (channel * 3)); /* and resume timer */ ctimers[tim]->TCR |= CTIMER_TCR_CEN_MASK; irq_restore(irq_state); return 0; } int timer_clear(tim_t tim, int channel) { DEBUG("timer_clear(%u, %d)\n", tim, channel); if ((tim >= TIMER_NUMOF) || (channel >= TIMER_CHANNEL_NUMOF)) { return -1; } CTIMER_Type* const dev = ctimers[tim]; dev->MCR &= ~(CTIMER_MCR_MR0I_MASK << (channel * 3)); return 0; } unsigned int timer_read(tim_t tim) { DEBUG("timer_read(%u) --> %" PRIu32 "\n", tim, ctimers[tim]->TC); return ctimers[tim]->TC; } void timer_start(tim_t tim) { DEBUG("timer_start(%u)\n", tim); ctimers[tim]->TCR |= CTIMER_TCR_CEN_MASK; } void timer_stop(tim_t tim) { DEBUG("timer_stop(%u)\n", tim); ctimers[tim]->TCR &= ~CTIMER_TCR_CEN_MASK; } static inline void isr_ctimer_n(CTIMER_Type *dev, uint32_t ctimer_num) { DEBUG("isr_ctimer_%" PRIu32 " flags=0x%" PRIx32 "\n", ctimer_num, dev->IR); unsigned state = dev->IR & ((1 << TIMER_CHANNEL_NUMOF) - 1); while (state) { uint8_t channel; state = bitarithm_test_and_clear(state, &channel); /* Note: setting the bit to 1 in the flag register will clear the * bit. */ dev->IR = 1u << channel; dev->MCR &= ~(CTIMER_MCR_MR0I_MASK << (channel * 3)); isr_ctx[ctimer_num].cb(isr_ctx[ctimer_num].arg, channel); } cortexm_isr_end(); } #ifdef CTIMER0 void isr_ctimer0(void) { isr_ctimer_n(CTIMER0, 0); } #endif /* CTIMER0 */ #ifdef CTIMER1 void isr_ctimer1(void) { isr_ctimer_n(CTIMER1, 1); } #endif /* CTIMER1 */ #ifdef CTIMER2 void isr_ctimer2(void) { isr_ctimer_n(CTIMER2, 2); } #endif /* CTIMER2 */ #ifdef CTIMER3 void isr_ctimer3(void) { isr_ctimer_n(CTIMER3, 3); } #endif /* CTIMER3 */