/*- * Copyright 2005 Colin Percival * Copyright 2013 Christian Mehlis & René Kijewski * Copyright 2016 Martin Landsmann * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD: src/lib/libmd/sha256c.c,v 1.2 2006/01/17 15:35:56 phk Exp $ */ /** * @ingroup sys_hashes * @{ * * @file * @brief SHA256 hash function implementation * * @author Colin Percival * @author Christian Mehlis * @author Rene Kijewski * @author Martin Landsmann * * @} */ #include #include #include "hashes/sha256.h" #include "board.h" #ifdef __BIG_ENDIAN__ /* Copy a vector of big-endian uint32_t into a vector of bytes */ #define be32enc_vect memcpy /* Copy a vector of bytes into a vector of big-endian uint32_t */ #define be32dec_vect memcpy #else /* !__BIG_ENDIAN__ */ /* * Encode a length len/4 vector of (uint32_t) into a length len vector of * (unsigned char) in big-endian form. Assumes len is a multiple of 4. */ static void be32enc_vect(void *dst_, const void *src_, size_t len) { if ((uintptr_t)dst_ % sizeof(uint32_t) == 0 && (uintptr_t)src_ % sizeof(uint32_t) == 0) { uint32_t *dst = dst_; const uint32_t *src = src_; for (size_t i = 0; i < len / 4; i++) { dst[i] = __builtin_bswap32(src[i]); } } else { uint8_t *dst = dst_; const uint8_t *src = src_; for (size_t i = 0; i < len; i += 4) { dst[i] = src[i + 3]; dst[i + 1] = src[i + 2]; dst[i + 2] = src[i + 1]; dst[i + 3] = src[i]; } } } /* * Decode a big-endian length len vector of (unsigned char) into a length * len/4 vector of (uint32_t). Assumes len is a multiple of 4. */ #define be32dec_vect be32enc_vect #endif /* __BYTE_ORDER__ != __ORDER_BIG_ENDIAN__ */ /* Elementary functions used by SHA256 */ #define Ch(x, y, z) ((x & (y ^ z)) ^ z) #define Maj(x, y, z) ((x & (y | z)) | (y & z)) #define SHR(x, n) (x >> n) #define ROTR(x, n) ((x >> n) | (x << (32 - n))) #define S0(x) (ROTR(x, 2) ^ ROTR(x, 13) ^ ROTR(x, 22)) #define S1(x) (ROTR(x, 6) ^ ROTR(x, 11) ^ ROTR(x, 25)) #define s0(x) (ROTR(x, 7) ^ ROTR(x, 18) ^ SHR(x, 3)) #define s1(x) (ROTR(x, 17) ^ ROTR(x, 19) ^ SHR(x, 10)) static const uint32_t K[64] = { 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5, 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da, 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967, 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070, 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3, 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2, }; /* * SHA256 block compression function. The 256-bit state is transformed via * the 512-bit input block to produce a new state. */ static void sha256_transform(uint32_t *state, const unsigned char block[64]) { uint32_t W[64]; uint32_t S[8]; /* 1. Prepare message schedule W. */ be32dec_vect(W, block, 64); for (int i = 16; i < 64; i++) { W[i] = s1(W[i - 2]) + W[i - 7] + s0(W[i - 15]) + W[i - 16]; } /* 2. Initialize working variables. */ memcpy(S, state, 32); /* 3. Mix. */ for (int i = 0; i < 64; ++i) { uint32_t e = S[(68 - i) % 8], f = S[(69 - i) % 8]; uint32_t g = S[(70 - i) % 8], h = S[(71 - i) % 8]; uint32_t t0 = h + S1(e) + Ch(e, f, g) + W[i] + K[i]; uint32_t a = S[(64 - i) % 8], b = S[(65 - i) % 8]; uint32_t c = S[(66 - i) % 8], d = S[(67 - i) % 8]; uint32_t t1 = S0(a) + Maj(a, b, c); S[(67 - i) % 8] = d + t0; S[(71 - i) % 8] = t0 + t1; } /* 4. Mix local working variables into global state */ for (int i = 0; i < 8; i++) { state[i] += S[i]; } } static unsigned char PAD[64] = { 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }; /* Add padding and terminating bit-count. */ static void sha256_pad(sha256_context_t *ctx) { /* * Convert length to a vector of bytes -- we do this now rather * than later because the length will change after we pad. */ unsigned char len[8]; be32enc_vect(len, ctx->count, 8); /* Add 1--64 bytes so that the resulting length is 56 mod 64 */ uint32_t r = (ctx->count[1] >> 3) & 0x3f; uint32_t plen = (r < 56) ? (56 - r) : (120 - r); sha256_update(ctx, PAD, (size_t) plen); /* Add the terminating bit-count */ sha256_update(ctx, len, 8); } /* SHA-256 initialization. Begins a SHA-256 operation. */ void sha256_init(sha256_context_t *ctx) { /* Zero bits processed so far */ ctx->count[0] = ctx->count[1] = 0; /* Magic initialization constants */ ctx->state[0] = 0x6A09E667; ctx->state[1] = 0xBB67AE85; ctx->state[2] = 0x3C6EF372; ctx->state[3] = 0xA54FF53A; ctx->state[4] = 0x510E527F; ctx->state[5] = 0x9B05688C; ctx->state[6] = 0x1F83D9AB; ctx->state[7] = 0x5BE0CD19; } /* Add bytes into the hash */ void sha256_update(sha256_context_t *ctx, const uint8_t *data, size_t len) { /* Number of bytes left in the buffer from previous updates */ uint32_t r = (ctx->count[1] >> 3) & 0x3f; /* Convert the length into a number of bits */ uint32_t bitlen1 = ((uint32_t) len) << 3; uint32_t bitlen0 = ((uint32_t) len) >> 29; /* Update number of bits */ if ((ctx->count[1] += bitlen1) < bitlen1) { ctx->count[0]++; } ctx->count[0] += bitlen0; /* Handle the case where we don't need to perform any transforms */ if (len < 64 - r) { memcpy(&ctx->buf[r], data, len); return; } /* Finish the current block */ const unsigned char *src = data; memcpy(&ctx->buf[r], src, 64 - r); sha256_transform(ctx->state, ctx->buf); src += 64 - r; len -= 64 - r; /* Perform complete blocks */ while (len >= 64) { sha256_transform(ctx->state, src); src += 64; len -= 64; } /* Copy left over data into buffer */ memcpy(ctx->buf, src, len); } /* * SHA-256 finalization. Pads the input data, exports the hash value, * and clears the context state. */ void sha256_final(sha256_context_t *ctx, uint8_t *dst) { /* Add padding */ sha256_pad(ctx); /* Write the hash */ be32enc_vect(dst, ctx->state, 32); /* Clear the context state */ memset((void *) ctx, 0, sizeof(*ctx)); } unsigned char *sha256(const unsigned char *d, size_t n, unsigned char *md) { sha256_context_t c; static unsigned char m[SHA256_DIGEST_LENGTH]; if (md == NULL) { md = m; } sha256_init(&c); sha256_update(&c, d, n); sha256_final(&c, md); return md; } const unsigned char *hmac_sha256(const unsigned char *key, size_t key_length, const unsigned *message, size_t message_length, unsigned char *result) { unsigned char k[SHA256_INTERNAL_BLOCK_SIZE]; memset((void *)k, 0x00, SHA256_INTERNAL_BLOCK_SIZE); if (key_length > SHA256_INTERNAL_BLOCK_SIZE) { sha256(key, key_length, k); } else { memcpy((void *)k, key, key_length); } /* * create the inner and outer keypads * rising hamming distance enforcing i_* and o_* are distinct * in at least one bit */ unsigned char o_key_pad[SHA256_INTERNAL_BLOCK_SIZE]; unsigned char i_key_pad[SHA256_INTERNAL_BLOCK_SIZE]; for (size_t i = 0; i < SHA256_INTERNAL_BLOCK_SIZE; ++i) { o_key_pad[i] = 0x5c ^ k[i]; i_key_pad[i] = 0x36 ^ k[i]; } /* * Create the inner hash * tmp = hash(i_key_pad CONCAT message) */ sha256_context_t c; unsigned char tmp[SHA256_DIGEST_LENGTH]; sha256_init(&c); sha256_update(&c, i_key_pad, SHA256_INTERNAL_BLOCK_SIZE); sha256_update(&c, (uint8_t *)message, message_length); sha256_final(&c, tmp); static unsigned char m[SHA256_DIGEST_LENGTH]; if (result == NULL) { result = m; } /* * Create the outer hash * result = hash(o_key_pad CONCAT tmp) */ sha256_init(&c); sha256_update(&c, o_key_pad, SHA256_INTERNAL_BLOCK_SIZE); sha256_update(&c, tmp, SHA256_DIGEST_LENGTH); sha256_final(&c, result); return result; } /** * @brief helper to compute sha256 inplace for the given buffer * * @param[in, out] element the buffer to compute a sha256 and store it back to it * */ static inline void sha256_inplace(unsigned char element[SHA256_DIGEST_LENGTH]) { sha256_context_t ctx; sha256_init(&ctx); sha256_update(&ctx, element, SHA256_DIGEST_LENGTH); sha256_final(&ctx, element); } unsigned char *sha256_chain(const unsigned char *seed, size_t seed_length, size_t elements, unsigned char *tail_element) { unsigned char tmp_element[SHA256_DIGEST_LENGTH]; /* assert if no sha256-chain can be created */ assert(elements >= 2); /* 1st iteration */ sha256(seed, seed_length, tmp_element); /* perform consecutive iterations minus the first one */ for (size_t i = 0; i < (elements - 1); ++i) { sha256_inplace(tmp_element); } /* store the result */ memcpy(tail_element, tmp_element, SHA256_DIGEST_LENGTH); return tail_element; } unsigned char *sha256_chain_with_waypoints(const unsigned char *seed, size_t seed_length, size_t elements, unsigned char *tail_element, sha256_chain_idx_elm_t *waypoints, size_t *waypoints_length) { /* assert if no sha256-chain can be created */ assert(elements >= 2); /* assert to prevent division by 0 */ assert(*waypoints_length > 0); /* assert if no waypoints can be created */ assert(*waypoints_length > 1); /* if we have enough space we store the whole chain */ if (*waypoints_length >= elements) { /* 1st iteration */ sha256(seed, seed_length, waypoints[0].element); waypoints[0].index = 0; /* perform consecutive iterations starting at index 1*/ for (size_t i = 1; i < elements; ++i) { sha256_context_t ctx; sha256_init(&ctx); sha256_update(&ctx, waypoints[(i - 1)].element, SHA256_DIGEST_LENGTH); sha256_final(&ctx, waypoints[i].element); waypoints[i].index = i; } /* store the result */ memcpy(tail_element, waypoints[(elements - 1)].element, SHA256_DIGEST_LENGTH); *waypoints_length = (elements - 1); return tail_element; } else { unsigned char tmp_element[SHA256_DIGEST_LENGTH]; size_t waypoint_streak = (elements / *waypoints_length); /* 1st waypoint iteration */ sha256(seed, seed_length, tmp_element); for (size_t i = 1; i < waypoint_streak; ++i) { sha256_inplace(tmp_element); } memcpy(waypoints[0].element, tmp_element, SHA256_DIGEST_LENGTH); waypoints[0].index = (waypoint_streak - 1); /* index of the current computed element in the chain */ size_t index = (waypoint_streak - 1); /* consecutive waypoint iterations */ size_t j = 1; for (; j < *waypoints_length; ++j) { for (size_t i = 0; i < waypoint_streak; ++i) { sha256_inplace(tmp_element); index++; } memcpy(waypoints[j].element, tmp_element, SHA256_DIGEST_LENGTH); waypoints[j].index = index; } /* store/pass the last used index in the waypoint array */ *waypoints_length = (j - 1); /* remaining iterations down to elements */ for (size_t i = index; i < (elements - 1); ++i) { sha256_inplace(tmp_element); } /* store the result */ memcpy(tail_element, tmp_element, SHA256_DIGEST_LENGTH); return tail_element; } } int sha256_chain_verify_element(unsigned char *element, size_t element_index, unsigned char *tail_element, size_t chain_length) { unsigned char tmp_element[SHA256_DIGEST_LENGTH]; int delta_count = (chain_length - element_index); /* assert if we have an index mismatch */ assert(delta_count >= 1); memcpy((void *)tmp_element, (void *)element, SHA256_DIGEST_LENGTH); /* perform all consecutive iterations down to tail_element */ for (int i = 0; i < (delta_count - 1); ++i) { sha256_inplace(tmp_element); } /* return if the computed element equals the tail_element */ return (memcmp(tmp_element, tail_element, SHA256_DIGEST_LENGTH) != 0); }