/* * Copyright (C) 2015 Loci Controls Inc. * 2016 Freie Universität Berlin * * This file is subject to the terms and conditions of the GNU Lesser * General Public License v2.1. See the file LICENSE in the top level * directory for more details. */ /** * @ingroup cpu_cc2538 * @ingroup drivers_periph_spi * @{ * * @file * @brief Low-level SPI driver implementation * * @author Ian Martin * @author Hauke Petersen * * @} */ #include "vendor/hw_memmap.h" #include "vendor/hw_ssi.h" #include "cpu.h" #include "mutex.h" #include "assert.h" #include "periph/spi.h" #define ENABLE_DEBUG 0 #include "debug.h" /** * @brief Array holding one pre-initialized mutex for each SPI device */ static mutex_t locks[SPI_NUMOF]; static inline cc2538_ssi_t *dev(spi_t bus) { /* .num is either 0 or 1, return respective base address */ return (spi_config[bus].num) ? (cc2538_ssi_t *)SSI1_BASE : (cc2538_ssi_t *)SSI0_BASE; } static inline void poweron(spi_t bus) { SYS_CTRL_RCGCSSI |= (1 << spi_config[bus].num); SYS_CTRL_SCGCSSI |= (1 << spi_config[bus].num); SYS_CTRL_DCGCSSI |= (1 << spi_config[bus].num); } static inline void poweroff(spi_t bus) { SYS_CTRL_RCGCSSI &= ~(1 << spi_config[bus].num); SYS_CTRL_SCGCSSI &= ~(1 << spi_config[bus].num); SYS_CTRL_DCGCSSI &= ~(1 << spi_config[bus].num); } void spi_init(spi_t bus) { DEBUG("%s: bus=%u\n", __FUNCTION__, bus); assert(bus < SPI_NUMOF); /* init mutex for given bus */ mutex_init(&locks[bus]); /* temporarily power on the device */ poweron(bus); /* configure device to be a master and disable SSI operation mode */ dev(bus)->CR1 = 0; /* configure system clock as SSI clock source */ dev(bus)->CC = SSI_CC_CS_IODIV; /* and power off the bus again */ poweroff(bus); /* trigger SPI pin configuration */ spi_init_pins(bus); } void spi_init_pins(spi_t bus) { DEBUG("%s: bus=%u\n", __FUNCTION__, bus); /* select values according to SPI device */ cc2538_ioc_sel_t txd = spi_config[bus].num ? SSI1_TXD : SSI0_TXD; cc2538_ioc_sel_t clk = spi_config[bus].num ? SSI1_CLK_OUT : SSI0_CLK_OUT; cc2538_ioc_sel_t fss = spi_config[bus].num ? SSI1_FSS_OUT : SSI0_FSS_OUT; cc2538_ioc_pin_t rxd = spi_config[bus].num ? SSI1_RXD : SSI0_RXD; /* init pin functions and multiplexing */ gpio_init_mux(spi_config[bus].mosi_pin, OVERRIDE_ENABLE, txd, GPIO_MUX_NONE); gpio_init_mux(spi_config[bus].sck_pin, OVERRIDE_ENABLE, clk, GPIO_MUX_NONE); gpio_init_mux(spi_config[bus].cs_pin, OVERRIDE_ENABLE, fss, GPIO_MUX_NONE); gpio_init_mux(spi_config[bus].miso_pin, OVERRIDE_DISABLE, GPIO_MUX_NONE, rxd); } int spi_acquire(spi_t bus, spi_cs_t cs, spi_mode_t mode, spi_clk_t clk) { DEBUG("%s: bus=%u\n", __FUNCTION__, bus); (void) cs; /* lock the bus */ mutex_lock(&locks[bus]); /* power on device */ poweron(bus); /* configure SCR clock field, data-width and mode */ dev(bus)->CR0 = 0; dev(bus)->CPSR = (spi_clk_config[clk].cpsr); dev(bus)->CR0 = ((spi_clk_config[clk].scr << 8) | mode | SSI_CR0_DSS(8)); /* enable SSI device */ dev(bus)->CR1 = SSI_CR1_SSE; return SPI_OK; } void spi_release(spi_t bus) { DEBUG("%s: bus=%u\n", __FUNCTION__, bus); /* disable and power off device */ dev(bus)->CR1 = 0; poweroff(bus); /* and release lock... */ mutex_unlock(&locks[bus]); } static uint8_t _trx(cc2538_ssi_t *dev, uint8_t in) { while (!(dev->SR & SSI_SR_TNF)) {} dev->DR = in; while (!(dev->SR & SSI_SR_RNE)) {} return dev->DR; } void spi_transfer_bytes(spi_t bus, spi_cs_t cs, bool cont, const void *out, void *in, size_t len) { DEBUG("%s: bus=%u, len=%u\n", __FUNCTION__, bus, (unsigned)len); const uint8_t *out_buf = out; uint8_t *in_buf = in; assert(out_buf || in_buf); if (cs != SPI_CS_UNDEF) { gpio_clear((gpio_t)cs); } if (!in_buf) { for (const void *end = out_buf + len; out_buf != end; ++out_buf) { _trx(dev(bus), *out_buf); } } else if (!out_buf) { for (void *end = in_buf + len; in_buf != end; ++in_buf) { *in_buf = _trx(dev(bus), 0); } } else { for (void *end = in_buf + len; in_buf != end; ++in_buf, ++out_buf) { *in_buf = _trx(dev(bus), *out_buf); } } if ((!cont) && (cs != SPI_CS_UNDEF)) { gpio_set((gpio_t)cs); } }