/*
* Copyright (C) 2018 Gunar Schorcht
*
* This file is subject to the terms and conditions of the GNU Lesser
* General Public License v2.1. See the file LICENSE in the top level
* directory for more details.
*/
/**
* @defgroup drivers_l3gxxxx L3Gxxxx 3-axis gyroscope sensor family
* @ingroup drivers_sensors
* @ingroup drivers_saul
* @brief Device Driver for ST L3Gxxxx 3-axis gyroscope sensor family
*
* \section l3gxxxx Driver for ST L3Gxxxx 3-axis gyroscope sensor family
*
* ## Table of contents {#l3gxxxx_toc}
*
* 1. [Overview](#l3gxxxx_overview)
* 1. [About the sensor](#l3gxxxx_about)
* 2. [Supported features](#l3gxxxx_supported)
* 2. [Measurement Process](#l3gxxxx_measurement_process)
* 1. [Sensor modes](#l3gxxxx_sensor_modes)
* 2. [Output Data Rates and Filters](#l3gxxxx_odr_filters)
* 3. [Using the driver (basic functionality)](#l3gxxxx_using_driver)
* 1. [Initialization](#l3gxxxx_initialization)
* 2. [Output data format](#l3gxxxx_output_data)
* 3. [Fetching data](#l3gxxxx_fetching_data)
* 4. [Using the FIFO](#l3gxxxx_fifo)
* 1. [Configuration of the FIFO](#l3gxxxx_fifo_config)
* 2. [Reading data from the FIFO](#l3gxxxx_fifo_read_data)
* 5. [Using Interrupts](#l3gxxxx_interrupts)
* 1. [Data interrupts (data ready and FIFO status) on signal `INT2/DRDY`]
* (#l3gxxxx_data_interrupt)
* 2. [Event interrupts (Axes movement and wake-up) on signal `INT1`]
* (#l3gxxxx_event_interrupt)
* 3. [Interrupt context problem](#l3gxxxx_interrupt_context)
* 4. [Interrupt signal properties](#l3gxxxx_interrupt_signal)
* 6. [Power Saving](#l3gxxxx_power_saving)
* 7. [Low level functions](#l3gxxxx_low_level)
* 8. [Default configuration](#l3gxxxx_default_configuration)
*
* # Overview {#l3gxxxx_overview}
*
* ## About the sensor {#l3gxxxx_about}
*
* ST L3Gxxxx sensors are low-power **3-axis angular rate sensors** connected
* to **I2C** or **SPI** with a full scale of up to **2000 dps**. It supports
* different measuring rates with a user selectable bandwidth.
*
* **Main features** of the sensor are:
* - 3 selectable full scales of ±245, ±500, and ±2000 dps
* - 7 measuring rates from 12.5 Hz to 800 Hz with 4 bandwidths
* - 16 bit angular rate value data output
* - 2 dedicated interrupt signals for data and event interrupts
* - integrated high-pass filters with 3 modes and 10 different cutoff
* frequencies
* - embedded temperature sensor with 8 bit data output
* - embedded 32 levels of 16 bit data output FIFO
* - I2C and SPI digital interface
* - embedded power-down and sleep mode with fast power-on and wake-up
*
* [Back to Table of Contents](#l3gxxxx_toc)
*
* ## Supported Features {#l3gxxxx_supported}
*
* The driver supports the following sensors of the L3Gxxxx 3-axis gyro sensor
* family. Used sensor variant has to be specified by using the respective
* pseudomodule.
*
*
* | Sensor Variant | Pseudomodule | Vendor Status |
* |:-----------------|:--------------|:--------------------------------|
* | L3GD20H | `l3gd20h` | Not recommended for new designs |
* | L3GD20 | `l3gd20` | Obsolete |
* | L3G4200D | `l3g4200_ng` | Obsolete |
* | A3G4250D | `a3g4250d` | Active |
* | I3G4250D | `i3g4250d` | Active |
*
*
* The driver is modular and supports different levels of functionality, which
* can be enabled using pseudomodules according to the requirements of the
* application. This ensures that the driver only uses as much ROM
* and RAM as really needed.
*
* As basic functionality the driver supports
* - a static configuration of the sensor by a default configuration parameter
* set of type #l3gxxxx_params_t as defined in the file l3gxxxx_params.h
* - the polling of raw output data or angular rates in millidegrees per
* second (mdps)
* - the power-down and power-up of the sensor
* - the use of the I2C or SPI interface
*
* The following pseudomodules are used to enable additional functionalities:
*
* | Pseudomodule | Functionality |
* |:--------------------|:--------------------------------------------------------|
* | `l3gxxxx_i2c` | I2C interface enabled |
* | `l3gxxxx_spi` | SPI interface enabled |
* | `l3gxxxx_low_odr` | Low output data rates enabled (L3GD20H only) |
* | `l3gxxxx_fifo` | 32 level FIFO enabled |
* | `l3gxxxx_irq_data` | Data interrupt (`INT2/DRDY`) handling enabled |
* | `l3gxxxx_irq_event` | Event interrupt (`INT1`) handling enabled |
* | `l3gxxxx_sleep` | Sleep and wake-up functions enabled |
* | `l3gxxxx_config` | Functions for changing configurations at runtime nabled |
*
*
* The following table shows the mapping of which modules have to be used
* to enable which functions of the L3Gxxxx.
*
*
* | Feature | Module |
* |:------------------------------------------------------------- |:--------------------|
* | 16 bit angular rate data output (raw and angular rate) | `l3gxxxx` |
* | Full scales of ±245, ±500, and ±2000 dps | `l3gxxxx` |
* | Using high-pass filter (HPF) and low-pass filter (LPF1/LPF2) | `l3gxxxx` |
* | Output data rates (ODR) from 100 Hz to 800 Hz | `l3gxxxx` |
* | Output data rates (ODR) from 12.5 Hz to 50 Hz (L3GD20H only) | `l3gxxxx_low_odr` |
* | Polling data | `l3gxxxx` |
* | SAUL sensor interface | `l3gxxxx` |
* | Power-down and power-up functionality | `l3gxxxx` |
* | Sleep and wake-up functionality | `l3gxxxx_sleep` |
* | 32 level FIFO handling | `l3gxxxx_fifo` |
* | Data interrupt (`INT2/DRDY`) handling (data ready and FIFO) | `l3gxxxx_irq_data` |
* | Event interrupt (`INT1`) handling (Axes movement and wake-up) | `l3gxxxx_irq_event` |
* | Configuration of all sensor functions at runtime | `l3gxxxx_config` |
* | I2C interface | `l3gxxxx_i2c` |
* | SPI interface (SPI mode 3) | `l3gxxxx_spi` |
*
*
* @note
* - Multiple L3Gxxxx sensors of same type with both SPI and I2C interfaces
* can be used simultaneously. If neither the I2C nor the SPI interface
* are enabled by using the modules `l3gxxxx_i2c` or `l3gxxxx_spi`,
* the I2C interface is used by default.
*
* - In default configuration, the sensor is configured with
* an output data rate (ODR) of 100 Hz with a LPF2 cutoff frequency
* of 25 Hz (#L3GXXXX_ODR_100_25) and a full scale of 245 dps
* (#L3GXXXX_SCALE_245_DPS). The data are filtered with HPF and LPF2,
* where the HPF is used in normal mode with reset (#L3GXXXX_HPF_NORMAL)
* and a cutoff frequency of 8 Hz (see #l3gxxxx_config_hpf).
*
* This configuration can either be changed by overriding default
* parameters #CONFIG_L3GXXXX_ODR, #CONFIG_L3GXXXX_SCALE,
* #CONFIG_L3GXXXX_FILTER_SEL, #CONFIG_L3GXXXX_HPF_MODE and
* #CONFIG_L3GXXXX_HPF_CUTOFF or by using functions #l3gxxxx_set_mode,
* #l3gxxxx_set_scale, #l3gxxxx_select_output_filter, #l3gxxxx_config_hpf
* if module `l3gxxxx_config` is enabled.
*
* - If module 'l3gxxxx_fifo' is used, the FIFO is enabled in mode
* #L3GXXXX_FIFO with a watermark level (threshold) of 23, i.e. the
* interrupt #L3GXXXX_INT_FIFO_WATERMARK is triggered (if enabled) when
* the 24th sample is stored in the FIFO.
*
* This configuration can be changed either by overriding the default
* configuration parameters #CONFIG_L3GXXXX_FIFO_MODE and
* #CONFIG_L3GXXXX_FIFO_WATERMARK or by function #l3gxxxx_set_fifo_mode
* if module `l3gxxxx_config` is used.
*
* - If the handling of data interrupts on signal `INT2/DRDY` is
* enabled by module `l3gxxxx_irq_data`, it depends on whether module
* `l3gxxxx_fifo` is used, which data interrupts are enabled
* by default. If `l3gxxxx_fifo` is used, #L3GXXXX_INT_FIFO_WATERMARK and
* #L3GXXXX_INT_FIFO_OVERRUN interrupts are enabled by default. Otherwise
* only #L3GXXXX_INT_DATA_READY is enabled by default.
*
* This configuration can be changed using function #l3gxxxx_enable_int.
*
* - If the handling of event interrupts on signal `INT1` is enabled
* by module `l3gxxxx_irq_event`, the high event interrupt is enabled by
* default for all axes. This means that for each individual axis an
* interrupt is generated when the absolute value of its angular rate
* exceeds a threshold value of ~30 dps (high event).
*
* The axis data are filtered with HPF and LPF2. The interrupt signal
* `INT1` is triggered when the data for one axis becomes greater than
* the specified threshold (OR condition). The interrupt is latched
* by default.
*
* This configuration can be changed either by overriding the default
* configuration parameters #CONFIG_L3GXXXX_INT1_X_THRESH,
* #CONFIG_L3GXXXX_INT1_Y_THRESH, #CONFIG_L3GXXXX_INT1_Z_THRESH,
* #CONFIG_L3GXXXX_INT1_X_LT_THRESH, #CONFIG_L3GXXXX_INT1_X_GT_THRESH,
* #CONFIG_L3GXXXX_INT1_Y_LT_THRESH, #CONFIG_L3GXXXX_INT1_Y_GT_THRESH,
* #CONFIG_L3GXXXX_INT1_Z_LT_THRESH, #CONFIG_L3GXXXX_INT1_Z_GT_THRESH,
* #CONFIG_L3GXXXX_INT1_FILTER, #CONFIG_L3GXXXX_INT1_AND and
* #CONFIG_L3GXXXX_INT1_LATCH or at runtime using function
* #l3gxxxx_set_int_event_cfg function.
*
* The `INT1` signal is a HIGH active push/pull output.
*
* [Back to Table of Contents](#l3gxxxx_toc)
*
* # Measurement Process {#l3gxxxx_measurement_process}
*
* ## Sensor modes {#l3gxxxx_sensor_modes}
*
* L3Gxxxx sensors provide different operating modes.
*
* - **Power-down mode** is configured automatically after power up boot
* sequence. In this mode, all gyros are switched off. Therefore, it takes
* up to 100 ms to switch to another mode. The power consumption in this mode
* is about 1 uA.
*
* - **Normal mode** is the normal measurement mode. All gyros are switched on
* and at least one axis is enabled for measurements. Measurements are
* performed at a defined output data rate (**ODR**). The power consumption
* in this mode is about 5 mA.
*
* - **Sleep mode** is the normal mode when no axes era enabled for
* measurement. In this modes, all gyros are kept switched on. Therefore,
* it only takes 1/ODR to switch to normal mode if low pass filtering is
* disabled or 6/ODR if low pass filtering is enabled. The power consumption
* in this mode is about 2.5 mA.
*
* [Back to Table of Contents](#l3gxxxx_toc)
*
* ## Output Data Rates and Filters {#l3gxxxx_odr_filters}
*
* In normal mode, measurements are performed at a defined output rate (ODR)
* with a user selectable bandwidth.
*
* ### Used filter selection
*
* L3Gxxxx sensors integrate a combination
* of two low pass filters (LPF) and one high pass filter (HPF).
*
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* +---------------> L3GXXXX_NO_FILTER
* | +----- +
* +------------+--->| |---> L3GXXXX_LPF2_ONLY
* | | LPF2 |
* +-----+ +------+ | +-----+ +--->| |---> L3GXXXX_HPF_AND_LPF2
* | | | | | | | | +------+
* | ADC |-->| LPF1 |--+-->| HPF |--+---------------> L3GXXXX_HPF_ONLY
* | | | | | |
* +-----+ +------+ +-----+
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*
* First, raw sensor data are always filtered by LPF1 with a cutoff frequency
* that is fixed for the selected output data rate (ODR), see #l3gxxxx_odr_t.
* Resulting data can then optionally be filtered by HPF and/or LPF2. Both
* filters can be used or bypassed.
*
* The figure above shows possible **filter selections** and the driver symbols
* defined by #l3gxxxx_filter_sel_t. These can be used to set the filter
* combination separately for the output data and the data for event interrupt
* generation.
*
*
* | Driver symbol | High pass filter (HPF) used | Low pass filter 2 (LPF2) used |
* |:----------------------|:---------------------------:|:------------------------------:
* | #L3GXXXX_NO_FILTER | - | - |
* | #L3GXXXX_HPF_ONLY | x | - |
* | #L3GXXXX_LPF2_ONLY | - | x |
* | #L3GXXXX_HPF_AND_LPF2 | x | x |
*
*
* The default filter selection for the output data is #L3GXXXX_HPF_AND_LPF2
* and is defined by the default configuration parameter
* #CONFIG_L3GXXXX_FILTER_SEL. If the module `l3gxxxx_config` is used, it can
* be changed at runtime using function #l3gxxxx_select_output_filter.
*
* The default filter selection for event interrupt generation is
* #L3GXXXX_HPF_AND_LPF2 and is defined by default configuration parameter
* #CONFIG_L3GXXXX_INT1_FILTER. It can be changed at runtime with function
* #l3gxxxx_set_int_event_cfg.
*
* @note Since same filters are used for the output data as well as the
* data used for event interrupt generation (selective axes movement / wake-up),
* the configuration of the filters always affects both data. If the HPF is
* enabled for filtering the output data, it is also active for filtering the
* sensor data used for interrupt generation if the LPF2 is enabled for
* interrupt generation. The other way around, the HPF is also active for
* filtering the output data when it is enabled for interrupt generation and
* when the LPF2 is enabled for the output data.
*
* ### High pass filter mode
*
* The high pass filter (HPF) can be used in different modes.
*
*
* | Driver symbol | HPF mode |
* |:-----------------------|:------------------------|
* | #L3GXXXX_HPF_NORMAL | Normal mode |
* | #L3GXXXX_HPF_REFERENCE | Reference mode |
* | #L3GXXXX_HPF_AUTORESET | Auto-reset on interrupt |
*
*
* In normal mode, the HPF can be reset by reading the REFERENCE
* register, which instantly deletes the DC component
* of the angular rate. In reference mode, output data are the difference
* of raw sensor data and the contents of the REFERENCE register. In autoreset
* mode, HPF is automatically reset when a configured event interrupt occurs.
*
* The default HPF mode is #L3GXXXX_HPF_NORMAL and is defined by the
* default configuration parameter #CONFIG_L3GXXXX_HPF_MODE. If module
* `l3gxxxx_config` is used, it can be changed at runtime using
* function #l3gxxxx_config_hpf.
*
* ### Output data rates and filter cutoff frequencies
*
* The cutoff frequencies of LPF1 and LPF2 are determined by used output
* data rate #l3gxxxx_odr_t. The following **output data rates (ODR)**
* and the LPF1/LPF2 cutoff frequencies are defined
* (Reference: Application Note AN4506):
*
*
* | Mode | ODR [Hz] | LPF1 cutoff [Hz] | LPF2 cutoff [Hz] | Driver symbol |
* |:------- |:--------:|:----------------:|:----------------:|:---------------------|
* | Normal | 100 | 32 | 12.5 | #L3GXXXX_ODR_100_12 |
* | Normal | 100 | 32 | 25 | #L3GXXXX_ODR_100_25 |
* | Normal | 200 | 63.3 | 12.5 | #L3GXXXX_ODR_200_12 |
* | Normal | 200 | 63.3 | 25 | #L3GXXXX_ODR_200_25 |
* | Normal | 200 | 63.3 | 50 | #L3GXXXX_ODR_200_50 |
* | Normal | 200 | 63.3 | 70 | #L3GXXXX_ODR_200_70 |
* | Normal | 400 | 128 | 20 | #L3GXXXX_ODR_400_20 |
* | Normal | 400 | 128 | 25 | #L3GXXXX_ODR_400_25 |
* | Normal | 400 | 128 | 50 | #L3GXXXX_ODR_400_50 |
* | Normal | 400 | 128 | 110 | #L3GXXXX_ODR_400_110 |
* | Normal | 800 | 211 | 30 | #L3GXXXX_ODR_800_30 |
* | Normal | 800 | 211 | 35 | #L3GXXXX_ODR_800_35 |
* | Normal | 800 | 211 | 30 | #L3GXXXX_ODR_800_30 |
* | Normal | 800 | 211 | 100 | #L3GXXXX_ODR_800_100 |
* | Low ODR | 12.5 | 3.9 | - | #L3GXXXX_ODR_12 |
* | Low ODR | 25 | 7.8 | - | #L3GXXXX_ODR_25 |
* | Low ODR | 50 | 16 | 16.6 | #L3GXXXX_ODR_50 |
*
*
* @note Low ODRs are only available on L3GD20H and if module `l3gxxxx_low_odr`
* is used.
*
* The default output data rate (ODR) is #L3GXXXX_ODR_100_12 and defined by
* the default configuration parameter #CONFIG_L3GXXXX_ODR. If module
* `l3gxxxx_config` is used, it can be changed at runtime using
* function #l3gxxxx_set_mode, for example:
*
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~{.c}
* l3gxxxx_set_mode(&dev, L3GXXXX_ODR_400_20, true, true, false);
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*
* The **cutoff frequencies** of the HPF depend on the selected output data
* rate (ODR) and are specified by an index from 0 to 9, as shown in the
* following table. All frequencies are given in Hz.
*
*
* | ODR [Hz] | 12.5 | 25 | 50 | 100 | 200 | 400 | 800 |
* |---------:|:-----:|:-----:|:-----:|:----:|:----:|:----:|:---:|
* | 0 | 1 | 2 | 4 | 8 | 15 | 30 | 56 |
* | 1 | 0.5 | 1 | 2 | 4 | 8 | 15 | 30 |
* | 2 | 0.2 | 0.5 | 1 | 2 | 4 | 8 | 15 |
* | 3 | 0.1 | 0.2 | 0.5 | 1 | 2 | 4 | 8 |
* | 4 | 0.05 | 0.1 | 0.2 | 0.5 | 1 | 2 | 4 |
* | 5 | 0.02 | 0.05 | 0.1 | 0.2 | 0.5 | 1 | 2 |
* | 6 | 0.01 | 0.02 | 0.05 | 0.1 | 0.2 | 0.5 | 1 |
* | 7 | 0.005 | 0.01 | 0.02 | 0.05 | 0.1 | 0.2 | 0.5 |
* | 8 | 0.002 | 0.005 | 0.01 | 0.02 | 0.05 | 0.1 | 0.2 |
* | 9 | 0.001 | 0.002 | 0.005 | 0.01 | 0.02 | 0.05 | 0.1 |
*
*
* The default cutoff frequency of HPF is 8 Hz (index 0) and set by the
* default configuration parameter #CONFIG_L3GXXXX_HPF_CUTOFF. If module
* `l3gxxxx_config` is used, it can be changed at runtime using function
* #l3gxxxx_config_hpf,
* for example:
*
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~{.c}
* l3gxxxx_config_hpf(&dev, L3GXXXX_HPF_NORMAL, 0);
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*
* [Back to Table of Contents](#l3gxxxx_toc)
*
* # Using the driver {#l3gxxxx_using_driver}
*
* ## Initialization {#l3gxxxx_initialization}
*
* The **easiest way to use the driver** is simply to initialize the sensor
* with function #l3gxxxx_init using the default configuration parameter set
* #l3gxxxx_params as defined in file l3gxxxx_params.h.
*
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~{.c}
* static l3gxxxx_t dev;
*
* if (l3gxxxx_init(&dev, &l3gxxxx_params[0]) != L3DG20H_OK) {
* ... // error handling
* }
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*
* After this initialization, the sensor is fully operational and data can
* be fetched either by polling or interrupt driven.
*
* @note Function #l3gxxxx_init resets the sensor completely. All registers
* are reset to default values and the embedded FIFO is cleared.
*
* The default configuration parameter set defines
* - the communication interface,
* - the output data rate (ODR) including LPF1/LPF2 cutoff frequencies,
* - the filter combination and HPF cutoff frequency,
* - the sensitivity level selected by full scale,
* - the FIFO parameters if module `l3gxxxx_fifo` is used,
* - the data interrupt (`INT2/DRDY`) pin if module `l3gxxxx_irq_data` is used, and
* - the event interrupt (`INT1`) configuration if module `l3gxxxx_irq_event` is used.
*
* Most of these configuration parameters can also be changed at runtime
* by respective functions if the module `l3gxxxx_config` is used or by
* overriding default configuration parameters. Detailed information about
* the default configuration can be found in section
* [Configuration](#l3gxxxx_default_configuration).
*
* [Back to Table of Contents](#l3gxxxx_toc)
*
* ## Output data format {#l3gxxxx_output_data}
*
* In normal mode, the sensor determines periodically the angular rate for all
* axes that are enabled for measurement and produces raw output data
* with the selected output data rate (ODR).
*
* These **raw output data** are 16-bit signed integer values in two’s
* complement representation. Their range and their resolution depend on the
* sensitivity of the sensor which is selected by the **full scale** value.
* L3Gxxxx sensors allow to select the following full scales:
*
*
* | Full Scale | Sensitivity | Driver symbol | Remark |
* | -----------:|------------:|:------------------------|:--------------------------|
* | ±245 dps | 8.75 mdps | #L3GXXXX_SCALE_245_DPS | |
* | ±500 dps | 17.50 mdps | #L3GXXXX_SCALE_500_DPS | not available on A3G4250D |
* | ±2000 dps | 70.00 mdps | #L3GXXXX_SCALE_2000_DPS | not available on A3G4250D |
*
*
* @note On the A34250D, only 245 dps (#L3GXXXX_SCALE_245_DPS) is available
* as full scale value.
*
* The default full scale value is ±245 dps which is defined by the default
* configuration parameter #CONFIG_L3GXXXX_SCALE. If module `l3gxxxx_config`
* is used, it can be changed at runtime using function #l3gxxxx_set_scale,
* for example:
*
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~{.c}
* l3gxxxx_set_scale(&dev, L3GXXXX_SCALE_500_DPS);
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*
* [Back to Table of Contents](#l3gxxxx_toc)
*
* ## Fetching data {#l3gxxxx_fetching_data}
*
* To get the information whether new data are available, the user task can
* either use
*
* - the function #l3gxxxx_data_ready to check periodically whether new
* output data are available, or
* - the data ready interrupt (`INT2/DRDY`) which is triggered as soon as new
* output data are available (see below).
*
* Last measurement results can then be fetched either
*
* - as 16 bit raw output data of type #l3gxxxx_raw_data_t using function
* #l3gxxxx_read_raw or
* - as 32 bit integer angular rates type #l3gxxxx_data_t in
* millidegrees per second (mdps) using function #l3gxxxx_read.
*
* It is recommended to use function #l3gxxxx_read since the driver already
* converts raw output data to angular rates according to the selected
* full scale value.
*
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~{.c}
* while (1)
* {
* l3gxxxx_data_t data;
*
* // execute task every 20 ms
* xtimer_usleep(20 * US_PER_MS);
* ...
* // test for new data and fetch them if available
* if ((l3gxxxx_data_ready(&dev) > 0) &&
* (l3gxxxx_read(&dev, &data) == L3GXXXX_OK)) {
* // do something with data
* ...
* }
* }
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*
* @note
* The functions #l3gxxxx_read and #l3gxxxx_read_raw always return the last
* available results. If these functions are called more often than
* measurements are performed, some measurement results are retrieved
* multiple times. If these functions are called too rarely, some measurement
* results will be lost.
*
* [Back to Table of Contents](#l3gxxxx_toc)
*
* # Using the FIFO {#l3gxxxx_fifo}
*
* In order to limit the rate at which the host processor has to fetch the
* data, L3Gxxxx sensors embed a FIFO buffer. This is in particular helpful
* at high output data rates. The FIFO buffer can work in seven different
* modes and is able to store up to 32 data samples. Please refer the
* [datasheet](http://www.st.com/resource/en/datasheet/l3gd20.pdf) or
* [application note](http://www.st.com/resource/en/application_note/dm00119036.pdf)
* for more details.
*
*
* | Driver symbol | FIFO mode | Remark |
* |---------------------------|-----------------------|:------------------------|
* | #L3GXXXX_BYPASS | Bypass mode | FIFO is not used |
* | #L3GXXXX_FIFO | FIFO mode | |
* | #L3GXXXX_STREAM | Stream mode | |
* | #L3GXXXX_STREAM_TO_FIFO | Stream-to-FIFO mode | L3GD20H and L3GD20 only |
* | #L3GXXXX_BYPASS_TO_STREAM | Bypass-to-Stream mode | L3GD20H and L3GD20 only |
* | #L3GXXXX_DYNAMIC_STREAM | Dynamic Stream mode | L3GD20H only |
* | #L3GXXXX_BYPASS_TO_FIFO | Bypass to FIFO mode | L3GD20H only |
*
*
* A watermark level (threshold) can be set for the FIFO. If the number of
* data samples in the FIFO exceeds this value, the watermark flag is set
* and the interrupt #L3GXXXX_INT_FIFO_WATERMARK is triggered, if enabled.
* This interrupt can be used to gather a minimum number of samples of raw
* output data before the data are fetched as a single read operation from
* the sensor.
*
* ## Configuration of the FIFO {#l3gxxxx_fifo_config}
*
* The default FIFO mode is defined by the default configuration parameter
* #CONFIG_L3GXXXX_FIFO_MODE. The default watermark level (threshold) of
* the FIFO is defined by the default configuration parameter
* #CONFIG_L3GXXXX_FIFO_WATERMARK.
*
* If module `l3gxxxx_config` is used, both configuration parameters can be
* changed at runtime with function #l3gxxxx_set_fifo_mode. This function
* takes two parameters, the FIFO mode and the watermark level.
*
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~{.c}
* ...
* // set the FIFO mode with a watermark level (threshold) of 10, i.e. the
* // watermark flag is set or the interrupt is triggered for the 11th sample
* l3gxxxx_set_fifo_mode(&dev, L3GXXXX_STREAM, 10);
* ...
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*
* @note To clear the FIFO at any time, set the FIFO mode to #L3GXXXX_BYPASS
* and back to the desired FIFO mode.
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~{.c}
* l3gxxxx_set_fifo_mode(&dev, L3GXXXX_BYPASS, 0);
* l3gxxxx_set_fifo_mode(&dev, L3GXXXX_STREAM, 10);
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*
* ## Reading data from FIFO {#l3gxxxx_fifo_read_data}
*
* To read data from the FIFO, just use either
*
* - function #l3gxxxx_read_raw_fifo to get all raw output data stored
* in the FIFO or
* - function #l3gxxxx_read_fifo to get all data stored in the FIFO
* and converted to angular rates in mdps (millidegrees per second).
*
* Both functions clear the FIFO and return the number of samples read
* from the FIFO.
*
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~{.c}
* l3gxxxx_data_fifo_t data;
*
* while (1)
* {
* // execute task every 500 ms
* xtimer_usleep(500 * US_PER_MS);
* ...
* // test for new data
* if (l3gxxxx_data_ready(&dev) > 0) {
*
* // fetch data from fifo
* int num = l3gxxxx_read_fifo(dev, data);
*
* for (int i = 0; i < num; i++) {
* // do something with data[i] ...
* }
* }
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*
* [Back to Table of Contents](#l3gxxxx_toc)
*
* # Using Interrupts {#l3gxxxx_interrupts}
*
* L3Gxxxx sensors allow to activate interrupts on two different signals:
*
* - for data (data ready and FIFO status) on signal `INT2/DRDY`, and
* - for events (axis movement and wake-up) on signal `INT1`.
*
* [Back to Table of Contents](#l3gxxxx_toc)
*
* ## Data interrupts (data ready and FIFO status) on signal INT2/DRDY {#l3gxxxx_data_interrupt}
*
* Interrupts on signal `INT2/DRDY` can be generated by the following sources:
*
*
* | Interrupt source | Driver symbol |
* |:-----------------------------------------|:----------------------------|
* | Output data are ready to be read | #L3GXXXX_INT_DATA_READY |
* | FIFO content exceeds the watermark level | #L3GXXXX_INT_FIFO_WATERMARK |
* | FIFO is completely filled | #L3GXXXX_INT_FIFO_OVERRUN |
* | FIFO becomes empty | #L3GXXXX_INT_FIFO_EMPTY |
*
*
* #L3GXXXX_INT_DATA is the bitwise OR combination of these symbols.
*
* @note Using data interrupts requires to enable module `l3gxxxx_irq_data`.
*
* Each interrupt source can be enabled or disabled separately with
* function #l3gxxxx_enable_int.
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~{.c}
* l3gxxxx_enable_int(&dev, L3GXXXX_INT_DATA_READY, true);
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* If `l3gxxxx_fifo` is used, #L3GXXXX_INT_FIFO_WATERMARK and
* #L3GXXXX_INT_FIFO_OVERRUN interrupts are enabled by default. Otherwise
* only #L3GXXXX_INT_DATA_READY is enabled by default.
*
* The MCU GPIO pin used for the `INT2/DRDY` interrupt signal has to be defined
* by the hardware configuration parameter #L3GXXXX_INT2_PIN.
*
* Once a data interrupt is enabled, function #l3gxxxx_wait_int can be
* used to wait for an interrupt on signal `INT2/DRDY`. This function
* returns a structure with the interrupt sources of type #l3gxxxx_int_src_t
* which contains a flag for each possible data interrupt source in
* member #l3gxxxx_int_src_t::data that can be tested for true.
*
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~{.c}
* l3gxxxx_int_src_t int_src = l3gxxxx_wait_int(&dev);
*
* if (int_src.data.data_ready) {
* l3gxxxx_read(&dev, &data)
* ...
* }
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*
* If module `l3gxxxx_fifo` is used, the corresponding interrupt sources can
* be testsed.
*
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~{.c}
* l3gxxxx_int_src_t int_src = l3gxxxx_wait_int(&dev);
*
* ...
* if (int_src.data.fifo_threshold) {
* l3gxxxx_read(&dev, &data);
* ...
* }
* if (int_src.data.fifo_overrun) {
* printf("FIFO overrun");
* }
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*
* [Back to Table of Contents](#l3gxxxx_toc)
*
* ## Event interrupts (axes movement and wake-up) on signal INT1 {#l3gxxxx_event_interrupt}
*
* This interrupt signal allows to recognize independent rotations of
* the X, Y and Z axes. For this purpose, a separate threshold can be
* defined for each axis. If activated, the angular rate of each axis
* is compared with its threshold to check whether it is below or above
* the threshold. The results of all activated comparisons are combined
* OR or AND to generate the interrupt signal.
*
* The configuration of the thresholds, the activated comparisons and
* selected AND/OR combination allows to recognize special situations
* like selective axis movement (SA) or axes movement wake-up (WU).
*
* - **Selective axis movement recognition (SA)** means that only one
* axis is rotating. This is the case if the angular rate of selected
* axis is above its threshold AND angular rates of all other axes are
* below their thresholds.
*
* - **Axis movement wake-up (WU)** means that the angular rate of any
* axis is above its threshold (OR).
*
* @note Using event interrupts requires to enable module `l3gxxxx_irq_event`.
*
* The MCU GPIO pin used for the `INT1` interrupt signal is defined by the
* hardware configuration parameter #L3GXXXX_INT1_PIN.
*
* The default configuration for event interrupts is defined by
* #L3GXXXX_INT1_PARAMS. This configuration can be changed either by
* overriding default configuration parameters
* #CONFIG_L3GXXXX_INT1_X_THRESH, #CONFIG_L3GXXXX_INT1_Y_THRESH,
* #CONFIG_L3GXXXX_INT1_Z_THRESH,
* #CONFIG_L3GXXXX_INT1_X_LT_THRESH, #CONFIG_L3GXXXX_INT1_X_GT_THRESH,
* #CONFIG_L3GXXXX_INT1_Y_LT_THRESH, #CONFIG_L3GXXXX_INT1_Y_GT_THRESH,
* #CONFIG_L3GXXXX_INT1_Z_LT_THRESH, #CONFIG_L3GXXXX_INT1_Z_GT_THRESH,
* #CONFIG_L3GXXXX_INT1_FILTER, #CONFIG_L3GXXXX_INT1_AND and
* #CONFIG_L3GXXXX_INT1_LATCH or at runtime using function
* #l3gxxxx_set_int_event_cfg with a set of parameters
* of type #l3gxxxx_int_event_cfg_t that contains the configuration.
* For example, selective axis movement recognition (SA) for the z-axis
* could be configured as following. With this configuration, the event
* interrupt is only triggered if all conditions are met.
*
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~{.c}
* l3gxxxx_int_event_cfg_t int_cfg;
*
* // thresholds
* int_cfg.x_threshold = 100;
* int_cfg.y_threshold = 100;
* int_cfg.z_threshold = 1000;
*
* // X axis below threshold enabled
* int_cfg.x_low_enabled = true;
* int_cfg.x_high_enabled = false;
*
* // Y axis below threshold enabled
* int_cfg.y_low_enabled = true;
* int_cfg.y_high_enabled = false;
*
* // Z axis below threshold enabled
* int_cfg.z_low_enabled = false;
* int_cfg.z_high_enabled = true;
*
* // AND combination of all conditions
* int_cfg.and_or = true;
*
* // further parameters
* int_cfg.filter = L3GXXXX_HPF_ONLY;
* int_cfg.latch = true;
* int_cfg.duration = 0;
* int_cfg.wait = false;
*
* // set the configuration and enable the interrupt
* l3gxxxx_set_int_event_cfg(&dev, &int_cfg);
* l3gxxxx_enable_int(&dev, L3GXXXX_INT_EVENT, true);
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*
* The data structure #l3gxxxx_int_event_cfg_t defines
* - whether the interrupt signal should be latched until the interrupt
* source is read by function #l3gxxxx_wait_int,
* - which filters are applied to the data used for interrupt generation,
* - which time measured in 1/ODR an interrupt condition has to be given before
* the interrupt is generated, and
* - whether this time is also used when interrupt condition is no
* longer given before interrupt signal is reset.
*
* @note
* - If the interrupt is configured to be latched, the interrupt signal is
* active until the interrupt source is read by function #l3gxxxx_wait_int
* AND next raw output data are available. Otherwise the interrupt signal is
* active as long as the interrupt condition is satisfied.
* - The driver function #l3gxxxx_wait_int uses the leading flank of the
* interrupt signal to detect an interrupt and read the interrupt source.
*
* Function #l3gxxxx_enable_int is used to enable or disable the
* event interrupt generation (#L3GXXXX_INT_EVENT).
*
* As with data interrupts function #l3gxxxx_wait_int can be used to
* wait for an interrupt on signal `INT1` if event interrupts are enabled.
* This function returns a structure with the interrupt sources of type
* #l3gxxxx_int_src_t which contains a flag for each possible event interrupt
* source in member #l3gxxxx_int_src_t::event that can be tested for true.
*
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~{.c}
* l3gxxxx_int_src_t int_src = l3gxxxx_wait_int(&dev);
*
* if (int_src.event.x_low) {
* printf("x below ");
* }
* if (int_src.event.x_high) {
* printf("x above ");
* }
* ...
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*
* Activating all threshold comparisons and using the OR combination is the
* most flexible way to realize functions like selective axis movement by
* combining the different interrupt sources as required by the application.
*
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~{.c}
* l3gxxxx_int_event_cfg_t int_cfg;
*
* // thresholds
* int_cfg.x_threshold = 100;
* int_cfg.y_threshold = 100;
* int_cfg.z_threshold = 100;
*
* // X axis below and above threshold enabled
* int_cfg.x_low_enabled = true;
* int_cfg.x_high_enabled = true;
*
* // Y axis below and above threshold enabled
* int_cfg.y_low_enabled = true;
* int_cfg.y_high_enabled = true;
*
* // Z axis below and above threshold enabled
* int_cfg.z_low_enabled = true;
* int_cfg.z_high_enabled = true;
*
* // OR combination of all conditions
* int_cfg.and_or = false;
* ...
* // set the configuration and enable the interrupt
* l3gxxxx_set_int_event_cfg(&dev, &int_cfg);
* l3gxxxx_enable_int(&dev, l3gxxxx_int_event, true);
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*
* Following example shows the selective axis movement recognition (SA)
* for the Z-axis.
*
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~{.c}
* l3gxxxx_int_src_t int_src = l3gxxxx_wait_int(&dev);
*
* if (int_src.event.y_low && int_src.event.y_low && int_src.event.z_high) {
* // selective axis movement of Z-axis
* ...
* }
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*
* ## Interrupt context problem {#l3gxxxx_interrupt_context}
*
* All functions of the driver require direct access to the sensor via
* I2C or SPI which does not work in interrupt context.
*
* Therefore, the driver prevents the direct use of the interrupts and
* application specific ISRs. The only way to use interrupts is to call
* the function #l3gxxxx_wait_int which enables the interrupt signals
* for the configured MCU GPIO pins and then blocks the calling thread
* until an interrupt is triggered.
*
* Once an interrupt is triggered, the driver handles the interrupt with
* an internal ISR and then returns from the #l3gxxxx_wait_int function.
* The return value is a structure with the interrupt sources of type
* #l3gxxxx_int_src_t, which contains a flag for each possible interrupt
* source that can be tested for true.
*
* [Back to Table of Contents](#l3gxxxx_toc)
*
* ## Interrupt signal properties {#l3gxxxx_interrupt_signal}
*
* By default, interrupt signals are high active push/pull outputs.
*
* # Power Saving {#l3gxxxx_power_saving}
*
* L3Gxxxx sensors offer two modes for power saving:
*
* - **Power-down** mode
* - **Sleep** mode
*
* While in power-down mode almost all internal blocks of the device including
* the gyros are switched off, in sleep mode only the measuring functions for
* all three axes are deactivated. Therefore, the time to continue measurements
* after sleep mode is drastically shorter than after power down.
*
*
* | Starting mode | Target mode | Turn-on time typical |
* | ------------- | ----------- | ---------------------|
* | Power-down | Normal | 100 ms |
* | Power-down | Sleep | 100 ms |
* | Sleep | Normal | 1/ODR when LPF2 disabled
6/ODR when LPF2 enabled |
*
*
* L3Gxxxx sensors can be powered down when no measurements are required
* using the function #l3gxxxx_power_down. The power consumption is reduced
* to some uA in power-down mode. To restart the L3Gxxxx in previous
* measurement mode, the #l3gxxxx_power_up function can be used.
*
* If module `l3gxxxx_sleep` is enabled, the sleep mode can be activated with
* function #l3gxxxx_sleep. The power consumption is then reduced from 4.8 mA
* to 2.4 mA and thus to half. The #l3gxxxx_wake_up function continues the
* measurement in previous operation mode.
*
* [Back to Table of Contents](#l3gxxxx_toc)
*
* # Low level functions {#l3gxxxx_low_level}
*
* L3Gxxxx sensors are complex and flexible sensors with a lot of
* features. It can be used for a big number of different use cases.
* Since it is impossible to implement a high level interface
* which is generic enough to cover all the functionality of the sensor
* for all different use cases, there are two low level interface
* functions that allow direct read and write access to the registers
* of the sensor.
*
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~{.c}
* bool l3gxxxx_reg_read(l3gxxxx_sensor_t* dev, uint8_t reg, uint8_t *data, uint16_t len);
* bool l3gxxxx_reg_write(l3gxxxx_sensor_t* dev, uint8_t reg, uint8_t *data, uint16_t len);
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*
* @warning
* These functions should only be used to do something special that
* is not covered by the high level interface AND if you exactly
* know what you do and what it might affect. Please be aware that
* it might affect the high level interface.
*
* [Back to Table of Contents](#l3gxxxx_toc)
*
* # Default configuration {#l3gxxxx_default_configuration}
*
* Default sensor hardware configurations are set in file `l3gxxxx_params.h`
* using the following defines:
*
*
* | Hardware configuration | Driver name | Default Value |
* |:-----------------------|:------------------|:--------------------|
* | I2C device | #L3GXXXX_I2C_DEV | I2C_DEV(0) |
* | I2C address | #L3GXXXX_I2C_ADDR | #L3GXXXX_I2C_ADDR_2 |
* | SPI device | #L3GXXXX_SPI_DEV | SPI_DEV(0) |
* | SPI clock frequency | #L3GXXXX_SPI_CLK | SPI_CLK_1MHZ |
* | SPI CS signal | #L3GXXXX_SPI_CS | GPIO_PIN(0, 0) |
* | `INT1` MCU pin | #L3GXXXX_INT1_PIN | GPIO_PIN(0, 1) |
* | `INT2/DRDY` MCU pin | #L3GXXXX_INT2_PIN | GPIO_PIN(0, 2) |
*
*
* These hardware configurations can be overridden either by the board
* definition or by defining them in the `CFLAGS` variable in the make
* command, for example:
*
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* DRIVER=l3gd20h USEMODULE='l3gxxxx_irq_data` \
* CLFAGS='-DL3GXXXX_INT2_PIN=GPIO_PIN\(0, 5\)' \
* BOARD=... make -C tests/drivers/l3gxxxx
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*
* The default configuration of the sensor is defined in file
* `l3gxxxx_params.h` using the following defines:
*
*
* | Configuration parameter | Driver name | Default Value |
* |:-------------------------------------|:------------------------------|:----------------------|
* | ODR and LPF2 cutoff frequency | #CONFIG_L3GXXXX_ODR | #L3GXXXX_ODR_100_25 |
* | Full scale | #CONFIG_L3GXXXX_SCALE | #L3GXXXX_SCALE_245_DPS|
* | Filter selection used for output data| #CONFIG_L3GXXXX_FILTER_SEL | #L3GXXXX_HPF_AND_LPF2 |
* | HPF mode used for output data | #CONFIG_L3GXXXX_HPF_MODE | #L3GXXXX_HPF_NORMAL |
* | HPF cutoff frequency 8 Hz | #CONFIG_L3GXXXX_HPF_CUTOFF | 0 |
* | FIFO mode if FIFO is used | #CONFIG_L3GXXXX_FIFO_MODE | #L3GXXXX_FIFO |
* | FIFO threshold value if FIFO is used | #CONFIG_L3GXXXX_FIFO_WATERMARK| 23 |
* | INT1 threshold for X axis (~30 dps) | #CONFIG_L3GXXXX_INT1_X_THRESH | 4012 |
* | INT1 threshold for Y axis (~30 dps) | #CONFIG_L3GXXXX_INT1_Y_THRESH | 4012 |
* | INT1 threshold for Z axis (~30 dps) | #CONFIG_L3GXXXX_INT1_Z_THRESH | 4012 |
* | INT1 interrupt enable for X > X threshold | #CONFIG_L3GXXXX_INT1_X_GT_THRESH | true |
* | INT1 interrupt enable for Y > Y threshold | #CONFIG_L3GXXXX_INT1_Y_GT_THRESH | true |
* | INT1 interrupt enable for Z > Z threshold | #CONFIG_L3GXXXX_INT1_Z_GT_THRESH | true |
* | INT1 interrupt enable for X < X threshold | #CONFIG_L3GXXXX_INT1_X_LT_THRESH | false |
* | INT1 interrupt enable for Y < Y threshold | #CONFIG_L3GXXXX_INT1_Y_LT_THRESH | false |
* | INT1 interrupt enable for Z < Z threshold | #CONFIG_L3GXXXX_INT1_Z_LT_THRESH | false |
* | INT1 filter selection | #CONFIG_L3GXXXX_INT1_FILTER | #L3GXXXX_HPF_AND_LPF2 |
* | INT1 interrupt combination | #CONFIG_L3GXXXX_INT1_AND | false |
* | INT1 interrupt latch enabled | #CONFIG_L3GXXXX_INT1_LATCH | true |
*
*
* Single or all parameters of the default configuration can be overridden
* either by defining them in the variable `CFLAGS` in the make command
* line or by placing a modified file `l3gxxxx_params.h` in the
* application directory, for example:
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* DRIVER=l3gd20h USEMODULE='l3gxxxx_low_odr l3gxxxx_irq_data` \
* CLFAGS='-DCONFIG_L3GXXXX_ODR=L3GXXXX_ODR_12 -DL3GXXXX_INT2_PIN=GPIO_PIN\(0,5\)' \
* BOARD=... make -C tests/drivers/l3gxxxx
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*
* @author Gunar Schorcht
*
* @{
* @file
* @brief Device Driver for ST L3Gxxxx 3-axis gyroscope sensor family
*/
#ifndef L3GXXXX_H
#define L3GXXXX_H
#ifdef __cplusplus
extern "C"
{
#endif
#include
#include
#include "mutex.h"
#include "periph/gpio.h"
#include "periph/i2c.h"
#include "periph/spi.h"
#include "l3gxxxx_regs.h"
#if !IS_USED(MODULE_L3GD20H) && !IS_USED(MODULE_L3GD20) \
&& !IS_USED(MODULE_L3G4200D_NG) \
&& !IS_USED(MODULE_A3G4250D) \
&& !IS_USED(MODULE_I3G4250D)
#error Please select your sensor variant by using the respective pseudomodule.
#endif
/**
* @name L3Gxxxx addresses
* @{
*/
#if IS_USED(MODULE_L3GD20H) || IS_USED(MODULE_L3GD20)
#define L3GXXXX_I2C_ADDR_1 (0x6a) /**< SDO pin is low */
#define L3GXXXX_I2C_ADDR_2 (0x6b) /**< SDO pin is high */
#else
#define L3GXXXX_I2C_ADDR_1 (0x68) /**< SDO pin is low */
#define L3GXXXX_I2C_ADDR_2 (0x69) /**< SDO pin is high */
#endif
/** @} */
/**
* @name L3Gxxxx chip ids
* @{
*/
#define L3GXXXX_CHIP_ID_L3GD20H (0xd7) /**< Chip ID for L3GD20H */
#define L3GXXXX_CHIP_ID_L3GD20 (0xd4) /**< Chip ID for L3GD20 */
#define L3GXXXX_CHIP_ID_X3G42XXD (0xd3) /**< Chip ID for L3G4200D, I3G4250D, A3G4250D */
/** @} */
/** Definition of error codes */
typedef enum {
L3GXXXX_OK, /**< success */
L3GXXXX_ERROR_I2C, /**< I2C communication error */
L3GXXXX_ERROR_SPI, /**< SPI communication error */
L3GXXXX_ERROR_WRONG_CHIP_ID, /**< wrong chip id read from WHO_AM_I reg */
L3GXXXX_ERROR_INV_DEV, /**< invalid device type used */
L3GXXXX_ERROR_INV_MODE, /**< sensor mode is invalid or not available */
L3GXXXX_ERROR_INV_FIFO_MODE, /**< FIFO mode is invalid or not available */
L3GXXXX_ERROR_INV_INT_TYPE, /**< invalid interrupt type used */
L3GXXXX_ERROR_NO_NEW_DATA, /**< no new data are available */
L3GXXXX_ERROR_RAW_DATA, /**< reading raw output data failed */
L3GXXXX_ERROR_RAW_DATA_FIFO, /**< reading raw output data from FIFO failed */
L3GXXXX_ERROR_NO_INT1_PIN, /**< `INT1` signal pin not configured */
L3GXXXX_ERROR_NO_INT2_PIN, /**< `INT2/DRDY` signal pin not configured */
L3GXXXX_ERROR_BYPASS_MODE, /**< sensor is in bypass mode */
L3GXXXX_ERROR_FIFO_MODE, /**< sensor is in FIFO mode */
} l3gxxxx_error_codes_t;
/**
* @brief Sensor output data rates (ODR) and LPF2 cutoff frequencies
*
* The following output data rates (ODR) and the LPF1/LPF2 cutoff frequencies
* are defined (Reference: Application Note AN4506):
*
*
* | Mode | ODR [Hz] | LPF1 cutoff [Hz] | LPF2 cutoff [Hz] |
* |:-----------------------|:--------:|:----------------:|:----------------:|
* | High ODR | | | |
* | L3GXXXX_ODR_100_12 | 100 | 32 | 12.5 |
* | L3GXXXX_ODR_100_25 | 100 | 32 | 25 |
* | L3GXXXX_ODR_200_12 | 200 | 63.3 | 12.5 |
* | L3GXXXX_ODR_200_25 | 200 | 63.3 | 25 |
* | L3GXXXX_ODR_200_50 | 200 | 63.3 | 50 |
* | L3GXXXX_ODR_200_70 | 200 | 63.3 | 70 |
* | L3GXXXX_ODR_400_20 | 400 | 128 | 20 |
* | L3GXXXX_ODR_400_25 | 400 | 128 | 25 |
* | L3GXXXX_ODR_400_50 | 400 | 128 | 50 |
* | L3GXXXX_ODR_400_110 | 400 | 128 | 110 |
* | L3GXXXX_ODR_800_30 | 800 | 211 | 30 |
* | L3GXXXX_ODR_800_35 | 800 | 211 | 35 |
* | L3GXXXX_ODR_800_50 | 800 | 211 | 50 |
* | L3GXXXX_ODR_800_100 | 800 | 211 | 100 |
* | | | | |
* | Low ODR (L3GD20H only) | | | |
* | L3GXXXX_ODR_12 | 12.5 | 3.9 | - |
* | L3GXXXX_ODR_25 | 25 | 7.8 | - |
* | L3GXXXX_ODR_50 | 50 | 16 | 16.6 |
*
*
* Detailed information about the filter chain and possible
* filter combinations can be found in the section
* [Output data rates and filters](#l3gxxxx_odr_filters).
*
* While LPF1 is always used, LPF2 and HPF have to be explicitly enabled
* by the configuration parameter l3gxxxx_params_t::filter_sel or the
* #l3gxxxx_select_output_filter function if module `l3gxxxx_config` is
* used. #L3GXXXX_ODR_100_25 is used by the default configuration.
*
* @note Low data rates 12.5 Hz, 25 Hz and 50 Hz are only supported by L3GXXXX.
*/
typedef enum {
L3GXXXX_ODR_100_12 = 0x00, /**< High ODR 100 Hz, LPF1 cutoff 32 Hz, LPF2 cutoff 12.5 Hz */
L3GXXXX_ODR_100_25 = 0x01, /**< High ODR 100 Hz, LPF1 cutoff 32 Hz, LPF2 cutoff 25 Hz */
L3GXXXX_ODR_200_12 = 0x04, /**< High ODR 200 Hz, LPF1 cutoff 63.3 Hz, LPF2 cutoff 12.5 Hz */
L3GXXXX_ODR_200_25 = 0x05, /**< High ODR 200 Hz, LPF1 cutoff 63.3 Hz, LPF2 cutoff 25 Hz */
L3GXXXX_ODR_200_50 = 0x06, /**< High ODR 200 Hz, LPF1 cutoff 63.3 Hz, LPF2 cutoff 50 Hz */
L3GXXXX_ODR_200_70 = 0x07, /**< High ODR 200 Hz, LPF1 cutoff 63.3 Hz, LPF2 cutoff 70 Hz */
L3GXXXX_ODR_400_20 = 0x08, /**< High ODR 400 Hz, LPF1 cutoff 128 Hz, LPF2 cutoff 20 Hz */
L3GXXXX_ODR_400_25 = 0x09, /**< High ODR 400 Hz, LPF1 cutoff 128 Hz, LPF2 cutoff 25 Hz */
L3GXXXX_ODR_400_50 = 0x0a, /**< High ODR 400 Hz, LPF1 cutoff 128 Hz, LPF2 cutoff 50 Hz */
L3GXXXX_ODR_400_110 = 0x0b, /**< High ODR 400 Hz, LPF1 cutoff 128 Hz, LPF2 cutoff 110 Hz */
L3GXXXX_ODR_800_30 = 0x0c, /**< High ODR 400 Hz, LPF1 cutoff 211 Hz, LPF2 cutoff 30 Hz */
L3GXXXX_ODR_800_35 = 0x0d, /**< High ODR 400 Hz, LPF1 cutoff 211 Hz, LPF2 cutoff 35 Hz */
L3GXXXX_ODR_800_50 = 0x0e, /**< High ODR 400 Hz, LPF1 cutoff 211 Hz, LPF2 cutoff 50 Hz */
L3GXXXX_ODR_800_100 = 0x0f, /**< High ODR 400 Hz, LPF1 cutoff 211 Hz, LPF2 cutoff 100 Hz */
#if IS_USED(MODULE_L3GD20H) || IS_USED(MODULE_L3GXXXX_LOW_ODR) || DOXYGEN
L3GXXXX_ODR_12 = 0x10, /**< Low ODR 12.5 Hz, LPF1 cutoff 3.9 Hz, LPF2 not used */
L3GXXXX_ODR_25 = 0x14, /**< Low ODR 25 Hz, LPF1 cutoff 7.8 Hz, LPF2 not used */
L3GXXXX_ODR_50 = 0x18, /**< Low ODR 50 Hz, LPF1 cutoff 16 Hz, LPF2 cutoff 16.6 Hz */
#endif
} l3gxxxx_odr_t;
/**
* @brief Full scale in degrees per second (dps)
*
* The full scale value determines the sensitivity of the sensor and thus
* the range and resolution of the sensor's output data. The resolution
* of the output data is about Full Scale/INT16_MAX.
*
* @note On the A34250D, only 245 dps (#L3GXXXX_SCALE_245_DPS) is
* available as full scale value.
*/
typedef enum {
L3GXXXX_SCALE_245_DPS = 0, /**< 245 dps (default) */
L3GXXXX_SCALE_500_DPS = 1, /**< 500 dps */
L3GXXXX_SCALE_2000_DPS = 2, /**< 2000 dps */
} l3gxxxx_scale_t;
/**
* @brief FIFO mode
*
* The integrated FIFO with up to 32 data samples can be used in different
* modes. The mode defines the behavior of FIFO when it becomes full.
*/
typedef enum {
L3GXXXX_BYPASS = 0, /**< FIFO is not used (default) */
L3GXXXX_FIFO = 1, /**< Data samples are stored in the FIFO until
it is full */
L3GXXXX_STREAM = 2, /**< FIFO is used as ring buffer and newest
data samples are stored continuously */
#if IS_USED(MODULE_L3GD20H) || IS_USED(MODULE_L3GD20) || DOXYGEN
L3GXXXX_STREAM_TO_FIFO = 3, /**< FIFO is used in Stream mode until an
interrupt, switches then to FIFO mode
(L3GD20H and L3GD20 only) */
L3GXXXX_BYPASS_TO_STREAM = 4, /**< FIFO is not used until an interrupt,
switches then to Stream mode
(L3GD20H and L3GD20 only) */
#endif
#if IS_USED(MODULE_L3GD20H) || DOXYGEN
L3GXXXX_DYNAMIC_STREAM = 6, /**< like Stream mode, but differs in reading
the first data sample after emptying
(L3GD20H only) */
L3GXXXX_BYPASS_TO_FIFO = 7 /**< FIFO is not used until an interrupt,
switches then to FIFO mode
(L3GD20H only) */
#endif
} l3gxxxx_fifo_mode_t;
/**
* @brief High pass filter (HPF) and low pass filter 2 (LPF2) selection
*
* L3Gxxxx sensors integrate a combination of two low pass filters (LPF) and
* one high pass filter (HPF).
*
* First, raw sensor data are always filtered by LPF1 with a cutoff frequency
* that is fixed for the selected output data rate (ODR), see #l3gxxxx_odr_t.
* Resulting data can then optionally be filtered by HPF and/or LPF2. Both
* filters can be used or bypassed.
*
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* +---------------> L3GXXXX_NO_FILTER
* | +----- +
* +------------+--->| |---> L3GXXXX_LPF2_ONLY
* | | LPF2 |
* +-----+ +------+ | +-----+ +--->| |---> L3GXXXX_HPF_AND_LPF2
* | | | | | | | | +------+
* | ADC |-->| LPF1 |--+-->| HPF |--+---------------> L3GXXXX_HPF_ONLY
* | | | | | |
* +-----+ +------+ +-----+
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* #l3gxxxx_filter_sel_t defines the possible filter combinations that can
* be used to select the filters for the output data and for the
* interrupt generation separately.
*
* The default filter selection for the output data is #L3GXXXX_HPF_AND_LPF2
* and is defined by the default configuration parameter
* #CONFIG_L3GXXXX_FILTER_SEL. If the module `l3gxxxx_config` is used, it can
* be changed at runtime using function #l3gxxxx_select_output_filter.
*
* The default filter selection for event interrupt generation is
* #L3GXXXX_HPF_AND_LPF2 and is defined by default configuration parameter
* #CONFIG_L3GXXXX_INT1_FILTER. It can be changed at runtime with function
* #l3gxxxx_set_int_event_cfg.
*
* @note Since same filters are used for the output data as well as the
* data used for event interrupt generation (selective axes movement / wake-up),
* the configuration of the filters always affects both data. If the HPF is
* enabled for filtering the output data, it is also active for filtering the
* sensor data used for interrupt generation if the LPF2 is enabled for
* interrupt generation. The other way around, the HPF is also active for
* filtering the output data when it is enabled for interrupt generation and
* when the LPF2 is enabled for the output data.
*
* The cutoff frequencies of LPF1 and LPF2 are determined by the used output
* data rate #l3gxxxx_odr_t, see section [Output Data Rates and Filters]
* (#l3gxxxx_odr_filters). The default cutoff frequency of HPF is 8 Hz and
* set by the default configuration parameter #CONFIG_L3GXXXX_HPF_CUTOFF.
* If module `l3gxxxx_config` is used, it can be changed at runtime using
* function #l3gxxxx_config_hpf.
*/
typedef enum {
L3GXXXX_NO_FILTER = 0, /**< HPF not used, LPF2 not used (default) */
L3GXXXX_HPF_ONLY = 1, /**< HPF used, LPF2 not used */
L3GXXXX_LPF2_ONLY = 2, /**< HPF not used, LPF2 used */
L3GXXXX_HPF_AND_LPF2 = 3 /**< HPF used, LPF2 used */
} l3gxxxx_filter_sel_t;
/**
* @brief HPF (high pass filter) modes
*
* The high pass filter can be used in different modes.
*/
typedef enum {
L3GXXXX_HPF_NORMAL = 0, /**< Normal mode, HPF is reset by reading
the REFERENCE register */
L3GXXXX_HPF_REFERENCE = 1, /**< Reference mode, output data are the
difference to the REFERENCE register */
L3GXXXX_HPF_AUTORESET = 3 /**< Autoreset mode, HPF is automatically reset
when a configured event interrupt occurs */
} l3gxxxx_hpf_mode_t;
/**
* @brief Interrupt types
*
* L3Gxxxx sensors support different types of interrupts. These are on the
* one hand the various data interrupts on signal `INT2/DRDY` and on the
* other hand event interrupts on signal `INT1`.
*
* The enumeration values correspond to the according bits in register
* CTRL3 (#L3GXXXX_REG_CTRL3).
*
* #L3GXXXX_INT_DATA combines the various data interrupts to an ORed value.
*/
typedef enum {
/**
* Data interrupt on signal `INT2/DRDY`: Output data are ready to be read.
*/
L3GXXXX_INT_DATA_READY = L3GXXXX_INT2_DRDY,
/**
* Data interrupt on signal `INT2/DRDY`: FIFO filling exceeds the
* watermark level (threshold)
*/
L3GXXXX_INT_FIFO_WATERMARK = L3GXXXX_INT2_WTM,
/**
* Data interrupt on signal `INT2/DRDY`: FIFO is completely filled
*/
L3GXXXX_INT_FIFO_OVERRUN = L3GXXXX_INT2_ORUN,
/**
* Data interrupt on signal `INT2/DRDY`: FIFO becomes empty
*/
L3GXXXX_INT_FIFO_EMPTY = L3GXXXX_INT2_EMPTY,
/**
* Event interrupt on signal `INT1`: Angular rate of one or more axes
* is lower or higher than the configured threshold.
*/
L3GXXXX_INT_EVENT = L3GXXXX_INT1_IG,
} l3gxxxx_int_types_t;
/**
* @brief Data interrupts (Data ready and FIFO status)
*
* This define combines the data interrupt types of #l3gxxxx_int_types_t
* that use the `INT2/DRDY` signal to an ORed value.
*/
#define L3GXXXX_INT_DATA (L3GXXXX_INT_DATA_READY | \
L3GXXXX_INT_FIFO_WATERMARK | \
L3GXXXX_INT_FIFO_OVERRUN | \
L3GXXXX_INT_FIFO_EMPTY)
/**
* @brief Event interrupt generator configuration (axis movement and wake-up)
*
* memset to 0 to disable all interrupt conditions (default)
*/
typedef struct {
uint16_t x_threshold; /**< X threshold value in full scale / INT16_MAX */
uint16_t y_threshold; /**< Y threshold value in full scale / INT16_MAX */
uint16_t z_threshold; /**< Z threshold value in full scale / INT16_MAX */
bool x_low_enabled; /**< Interrupt enabled for |X| < X threshold (X low event) */
bool x_high_enabled; /**< Interrupt enabled for |X| > X threshold (X high event) */
bool y_low_enabled; /**< Interrupt enabled for |Y| < Y threshold (Y low event) */
bool y_high_enabled; /**< Interrupt enabled for |Y| > Y threshold (Y high event) */
bool z_low_enabled; /**< Interrupt enabled for |Z| < Z threshold (Z low event) */
bool z_high_enabled; /**< Interrupt enabled for |Z| > Z threshold (Y high event) */
l3gxxxx_filter_sel_t filter; /**< HPF and LPF2 filter selection used
for threshold comparison */
bool and_or; /**< Combination of interrupt events (true=AND, false=OR):
AND - all enabled axes passed their tresholds
OR - at least one axis passed its threshold */
bool latch; /**< Latch the interrupt when true until the interrupt
source has been read by function l3gxxxx_wait_int. */
uint8_t duration; /**< Duration in 1/ODR an interrupt condition has to be
given before the interrupt is generated. */
bool wait; /**< When true, duration is also used when interrupt
condition in no longer given before interrupt
signal is reset. */
bool counter_mode; /**< DCRM is not documented and not used therefore. */
} l3gxxxx_int_event_cfg_t;
/**
* @brief Event interrupt sources (axis movement and wake-up)
*/
typedef union {
struct {
uint8_t x_low :1; /**< true on |X| < X threshold (X low event) */
uint8_t x_high:1; /**< true on |X| > X threshold (X high event) */
uint8_t y_low :1; /**< true on |Y| < Y threshold (Y low event) */
uint8_t y_high:1; /**< true on |Y| > Y threshold (Y high event) */
uint8_t z_low :1; /**< true on |Z| < Z threshold (Z low event) */
uint8_t z_high:1; /**< true on |Z| > Z threshold (Z high event) */
uint8_t active:1; /**< true when one or more events have been generated */
uint8_t unused:1; /**< not used */
};
uint8_t val; /**< event interrupt sources as value that
can be used for bitwise operations */
} l3gxxxx_int_event_src_t;
/**
* @brief Data interrupt sources (data ready and FIFO status)
*/
typedef union {
struct {
uint8_t fifo_empty :1; /**< true when FIFO is empty */
uint8_t fifo_overrun :1; /**< true when FIFO is completely filled */
uint8_t fifo_watermark:1; /**< true when FIFO filling > watermark */
uint8_t data_ready :1; /**< true when data are ready to read */
uint8_t unused :4; /**< not used */
};
uint8_t val; /**< data interrupt sources as value that
can be used for bitwise operations */
} l3gxxxx_int_data_src_t;
/**
* @brief Composite type for all possible interrupt sources
*
* This type combines the possible interrupt sources for event interrupts on
* signal `INT1` (l3gxxxx_int_event_src_t) with those for data interrupts on
* signal `INT2/DRDY` (l3gxxxx_int_data_src_t).
*/
typedef struct {
l3gxxxx_int_event_src_t event; /**< event interrupt sources */
l3gxxxx_int_data_src_t data; /**< data interrupt sources */
} l3gxxxx_int_src_t;
/**
* @brief `INT1`, `INT2/DRDY` sensor signal activity level
*/
typedef enum {
L3GXXXX_HIGH = 0, /**< INT signals are High active (default) */
L3GXXXX_LOW /**< INT signals are Low active */
} l3gxxxx_int_pin_level_t;
/**
* @brief `INT1`, `INT2/DRDY` sensor signal type
*/
typedef enum {
L3GXXXX_PUSH_PULL = 0, /**< INT pins are push/pull outputs (default) */
L3GXXXX_OPEN_DRAIN /**< INT pins are open-drain */
} l3gxxxx_int_pin_type_t;
/**
* @brief Raw output data set as two's complements
*/
typedef struct {
int16_t x; /**< X angular rate (roll) as 16 bit two's complements */
int16_t y; /**< Y angular rate (pitch) as 16 bit two's complements */
int16_t z; /**< Z angular rate (yaw) as 16 bit two's complements */
} l3gxxxx_raw_data_t;
/**
* @brief Angular rates in millidegrees per seconds (mdps)
*/
typedef struct {
int32_t x; /**< X angular rate (roll) */
int32_t y; /**< Y angular rate (pitch) */
int32_t z; /**< Z angular rate (yaw) */
} l3gxxxx_data_t;
/**
* @brief Raw output data FIFO type
*/
typedef l3gxxxx_raw_data_t l3gxxxx_raw_data_fifo_t[32];
/**
* @brief Angular rates FIFO type
*/
typedef l3gxxxx_data_t l3gxxxx_data_fifo_t[32];
/**
* @brief L3Gxxxx interface types
*/
typedef enum {
#if IS_USED(MODULE_L3GXXXX_I2C) || DOXYGEN
L3GXXXX_I2C, /**< I2C interface used */
#endif
#if IS_USED(MODULE_L3GXXXX_SPI) || DOXYGEN
L3GXXXX_SPI, /**< SPI interface used */
#endif
} l3gxxxx_if_t;
#if IS_USED(MODULE_L3GXXXX_I2C) || DOXYGEN
/**
* @brief L3Gxxxx I2C interface parameters
*/
typedef struct {
i2c_t dev; /**< I2C device used */
uint8_t addr; /**< I2C slave address */
} l3gxxxx_i2c_params_t;
#endif
#if IS_USED(MODULE_L3GXXXX_SPI) || DOXYGEN
/**
* @brief L3Gxxxx SPI interface parameters
*/
typedef struct {
spi_t dev; /**< SPI device used */
spi_clk_t clk; /**< SPI clock speed */
gpio_t cs; /**< SPI chip Select pin */
} l3gxxxx_spi_params_t;
#endif
/**
* @brief L3Gxxxx Hardware interface parameters union
*/
typedef struct {
l3gxxxx_if_t type; /**< I2C/SPI interface type selector */
union {
#if IS_USED(MODULE_L3GXXXX_I2C) || DOXYGEN
l3gxxxx_i2c_params_t i2c; /**< I2C interface parameters */
#endif
#if IS_USED(MODULE_L3GXXXX_SPI) || DOXYGEN
l3gxxxx_spi_params_t spi; /**< SPI interface parameters */
#endif
};
} l3gxxxx_if_params_t;
/**
* @brief L3Gxxxx device initialization parameters
*/
typedef struct {
l3gxxxx_if_params_t if_params; /**< Interface parameters (I2C/SPI) */
l3gxxxx_odr_t odr; /**< ODR and LPF2 cutoff frequency */
l3gxxxx_scale_t scale; /**< Full scale */
l3gxxxx_filter_sel_t filter_sel; /**< HPF/LPF2 filter selection */
l3gxxxx_hpf_mode_t hpf_mode; /**< HPF mode */
uint8_t hpf_cutoff; /**< HPF cutoff frequency 0..9, see
l3gxxxx_config_hpf for details */
#if IS_USED(MODULE_L3GXXXX_FIFO) || DOXYGEN
l3gxxxx_fifo_mode_t fifo_mode; /**< FIFO operation mode */
uint8_t fifo_watermark; /**< FIFO watermark setting 0..31 */
#endif
#if IS_USED(MODULE_L3GXXXX_IRQ_DATA) || DOXYGEN
gpio_t int2_pin; /**< MCU GPIO pin for data interrupts
on signal `INT2/DRDY` pin */
#endif
#if IS_USED(MODULE_L3GXXXX_IRQ_EVENT) || DOXYGEN
l3gxxxx_int_event_cfg_t int1_cfg; /**< event interrupt parameters */
gpio_t int1_pin; /**< MCU GPIO pin for event interrupts
on signal `INT1` */
#endif
} l3gxxxx_params_t;
/**
* @brief L3Gxxxx sensor device data structure type
*/
typedef struct {
l3gxxxx_params_t params; /**< Device initialization parameters */
l3gxxxx_int_types_t int_type; /**< Type of the last interrupt triggered */
mutex_t int_lock; /**< Used to lock the calling thread while
waiting for an interrupt */
enum { /**< Sensor detected at runtime */
L3GD20H, /**< L3GD20H detected */
L3GD20, /**< L3GD20 detected */
X3G42XXD /**< L3G400D, I3G4250D or A3G4250D detected */
} sensor; /**< recognized sensor type */
} l3gxxxx_t;
/**
* @name Sensor initialization and configuration
* @{
*/
/**
* @brief Initialize the L3Gxxxx sensor device
*
* This function resets the sensor and initializes it according to the
* given configuration parameter set. All registers are reset to their
* default values. The FIFO is cleared.
*
* @param[in] dev device descriptor of the L3Gxxxx sensor to be initialized
* @param[in] params L3Gxxxx configuration parameters
*
* @retval L3GXXXX_OK on success
* @retval L3GXXXX_ERROR_* negative error code, see #l3gxxxx_error_codes_t
*/
int l3gxxxx_init(l3gxxxx_t *dev, const l3gxxxx_params_t *params);
#if IS_USED(MODULE_L3GXXXX_CONFIG) || DOXYGEN
/**
* @brief Set sensor mode
*
* @note This function is available only if module `l3gxxxx_config` is used.
*
* @param[in] dev device descriptor of the L3Gxxxx sensor
* @param[in] odr output data rate (ODR) and LPF2 cutoff frequency
* @param[in] x enable X axis measurements if true
* @param[in] y enable Y axis measurements if true
* @param[in] z enable Z axis measurements if true
*
* @retval L3GXXXX_OK on success
* @retval L3GXXXX_ERROR_* negative error code, see #l3gxxxx_error_codes_t
*/
int l3gxxxx_set_mode(l3gxxxx_t *dev,
l3gxxxx_odr_t odr, bool x, bool y, bool z);
/**
* @brief Set full scale
*
* @note This function is available only if module `l3gxxxx_config` is used.
*
* @param[in] dev device descriptor of the L3Gxxxx sensor
* @param[in] scale fulle scale
*
* @retval L3GXXXX_OK on success
* @retval L3GXXXX_ERROR_* negative error code, see #l3gxxxx_error_codes_t
*/
int l3gxxxx_set_scale(l3gxxxx_t *dev, l3gxxxx_scale_t scale);
#endif /* IS_USED(MODULE_L3GXXXX_CONFIG) || DOXYGEN */
/** @} */
/**
* @name Power saving functions
* @{
*/
/**
* @brief Power down the sensor
*
* Changes the sensor operation mode to power-down mode. In this mode almost all
* internal blocks including the gyros are switched off. I2C and SPI interfaces
* are still active. The content of the configuration registers is preserved.
*
* @param[in] dev Device descriptor of L3Gxxxx device to read from
*
* @retval L3GXXXX_OK on success
* @retval L3GXXXX_ERROR_* negative error code, see #l3gxxxx_error_codes_t
*/
int l3gxxxx_power_down (l3gxxxx_t *dev);
/**
* @brief Power up the sensor
*
* Swichtes the sensor back into the last active operation mode. It takes
* up to 100 ms since the gyros have to be switched on.
*
* @param[in] dev Device descriptor of L3Gxxxx device to read from
*
* @retval L3GXXXX_OK on success
* @retval L3GXXXX_ERROR_* negative error code, see #l3gxxxx_error_codes_t
*/
int l3gxxxx_power_up (l3gxxxx_t *dev);
#if IS_USED(MODULE_L3GXXXX_SLEEP) || DOXYGEN
/**
* @brief Sleep mode
*
* Activates the sleep mode of the sensor. In this mode, measurements for all
* axes are disabled, but the gyroscopes remain on. To return from sleep mode,
* function #l3gxxxx_wake_up is used.
*
* @note This function is available only if module `l3gxxxx_sleep` is used.
*
* @param[in] dev Device descriptor of L3Gxxxx device to read from
*
* @retval L3GXXXX_OK on success
* @retval L3GXXXX_ERROR_* negative error code, see #l3gxxxx_error_codes_t
*/
int l3gxxxx_sleep (l3gxxxx_t *dev);
/**
* @brief Wake-up the sensor
*
* Swichtes the sensor back into the last active operation mode. It takes only
* 1/ODR when LPF2 is disabled and 6/ODR when LPF2 is enabled to
* continue measurements.
*
* @note This function is available only if module `l3gxxxx_sleep` is used.
*
* @param[in] dev Device descriptor of L3Gxxxx device to read from
*
* @retval L3GXXXX_OK on success
* @retval L3GXXXX_ERROR_* negative error code, see #l3gxxxx_error_codes_t
*/
int l3gxxxx_wake_up (l3gxxxx_t *dev);
#endif /* IS_USED(MODULE_L3GXXXX_SLEEP) || DOXYGEN */
/** @} */
/**
* @name Basic sensor data handling
* @{
*/
/**
* @brief Data ready status function
*
* This function returns the number of new data samples that are ready to be
* read or 0 if no new data samples are available.
*
* If the FIFO is not used or used in bypass mode (#L3GXXXX_BYPASS), the
* maximum number of available data samples is 1. If another FIFO mode is
* used, the number of available data samples is equal to the number of
* new data samples in the FIFO.
*
* @param[in] dev device descriptor of the L3Gxxxx sensor
*
* @return number of data samples available for read or negative error code,
* see #l3gxxxx_error_codes_t
*/
int l3gxxxx_data_ready(const l3gxxxx_t *dev);
/**
* @brief Read last sample of angular rates in millidegree per second (mpds)
*
* Raw output data are read from the sensor and converted to angular rates
* in millidegrees per second (mdps). The resolution of the angular rates
* depends on the configured full scale value as follows:
*
*
* | Full Scale | Resolution | Driver symbol | Remark |
* | -----------:|-----------------:|:------------------------|:--------------------------|
* | ±245 dps | 8.75 mdps / LSB | #L3GXXXX_SCALE_245_DPS | |
* | ±500 dps | 17.50 mdps / LSB | #L3GXXXX_SCALE_500_DPS | not available on A3G4250D |
* | ±2000 dps | 70.00 mdps / LSB | #L3GXXXX_SCALE_2000_DPS | not available on A3G4250D |
*
*
* @note If the FIFO is enabled by module `l3gxxxxx_fifo`, the function
* returns only the last sample. To read all samples from the FIFO, function
* l3gxxxx_read_fifo has to be used.
*
* @param[in] dev device descriptor of the L3Gxxxx sensor
* @param[out] data last sample of angular rates in mdps
*
* @retval L3GXXXX_OK on success
* @retval L3GXXXX_ERROR_* negative error code, see #l3gxxxx_error_codes_t
*/
int l3gxxxx_read(const l3gxxxx_t *dev, l3gxxxx_data_t *data);
/**
* @brief Read last sample of raw output data as 16 bit two's complements
*
* @note If the FIFO is enabled by module `l3gxxxxx_fifo`, the function
* returns only the last sample. To read all samples from the FIFO, function
* l3gxxxx_read_raw_fifo has to be used.
*
* @param[in] dev device descriptor of the L3Gxxxx sensor
* @param raw last sample of raw output data as 16 bit two's
* complements
*
* @retval L3GXXXX_OK on success
* @retval L3GXXXX_ERROR_* negative error code, see #l3gxxxx_error_codes_t
*/
int l3gxxxx_read_raw(const l3gxxxx_t *dev, l3gxxxx_raw_data_t *raw);
/** @} */
#if IS_USED(MODULE_L3GXXXX_FIFO) || DOXYGEN
/**
* @name FIFO handling
* @{
*/
#if IS_USED(MODULE_L3GXXXX_CONFIG) || DOXYGEN
/**
* @brief Set FIFO mode and watermark level (threshold)
*
* The FIFO buffer can work in seven different modes and is able to store
* up to 32 data samples, see #l3gxxxx_fifo_mode_t. The use of the FIFO allows
* to reduce the interaction events of the MCU with the sensor and thus to
* save power.
*
* The watermark level can be used to define the number of raw output data
* samples that have to be stored in the FIFO before the watermark flag is
* set and the #L3GXXXX_INT_FIFO_WATERMARK is triggered, if enabled. The
* watermark flag is set and the interrupt #L3GXXXX_INT_FIFO_WATERMARK is
* triggered when the number of samples stored in the FIFO becomes greater
* than this watermark level (threshold).
*
* @note This function is available only if modules `l3gxxxx_fifo`
* and `l3gxxxx_config` are used.
*
* @param[in] dev device descriptor of the L3Gxxxx sensor
* @param[in] mode FIFO mode
* @param[in] watermark FIFO watermark (ignored in bypass mode)
*
* @retval L3GXXXX_OK on success
* @retval L3GXXXX_ERROR_* negative error code, see #l3gxxxx_error_codes_t
*/
int l3gxxxx_set_fifo_mode(l3gxxxx_t *dev,
l3gxxxx_fifo_mode_t mode, uint8_t watermark);
#endif /* IS_USED(MODULE_L3GXXXX_CONFIG) || DOXYGEN */
/**
* @brief Get all samples of angular rates stored in the FIFO (unit mdps)
*
* This function reads all samples of raw output data from the FIFO and
* converts them to angular rates in millidegrees per second (mdps) according
* to the configured full scale. For details about the resolution of these
* angular rates see l3gxxxx_read.
*
* In bypass mode (#L3GXXXX_BYPASS), it returns only the last sample.
*
* @note This function is available only if module `l3gxxxx_fifo` is used.
*
* @param[in] dev device descriptor of the L3Gxxxx sensor
* @param[out] data array for up to 32 samples of angular rates in mdps
*
* @return number of data samples read on success, or negative error code,
* see #l3gxxxx_error_codes_t
*/
int l3gxxxx_read_fifo(const l3gxxxx_t *dev,
l3gxxxx_data_fifo_t data);
/**
* @brief Get all samples of raw output data stored in the FIFO
*
* This function reads all samples of raw output data from the FIFO.
* In bypass mode (#L3GXXXX_BYPASS), it returns only the last raw
* output data sample.
*
* @note This function is available only if module `l3gxxxx_fifo` is used.
*
* @param[in] dev device descriptor of the L3Gxxxx sensor
* @param[out] raw array for up to 32 raw output data as two's complement
*
* @return number of data samples read on success, or negative error code,
* see #l3gxxxx_error_codes_t
*/
int l3gxxxx_read_raw_fifo(const l3gxxxx_t *dev,
l3gxxxx_raw_data_fifo_t raw);
#endif /* IS_USED(MODULE_L3GXXXX_FIFO) || DOXYGEN */
/** @} */
#if IS_USED(MODULE_L3GXXXX_CONFIG) || DOXYGEN
/**
* @name Filter configuration and handling
* @{
*/
/**
* @brief Filter selection for raw output data
*
* L3Gxxxx supports a combination of a high pass filter (HPF) and a second
* low pass filter (LPF2). This function selects the combination of the HPF
* and the LPF2 applied to raw output data.
*
* @note
* - This function is available only if module `l3gxxxx_config` is used.
* - The filter selection for the output data also affects the filter
* selection for event interrupt generation. If the HPF is enabled for
* filtering the output data, it is also active for filtering the sensor
* data used for interrupt generation if the LPF2 is enabled for interrupt
* generation.
*
* @param[in] dev device descriptor of the L3Gxxxx sensor
* @param[in] filter selected filters for output values
*
* @retval L3GXXXX_OK on success
* @retval L3GXXXX_ERROR_* negative error code, see #l3gxxxx_error_codes_t
*/
int l3gxxxx_select_output_filter(l3gxxxx_t *dev,
l3gxxxx_filter_sel_t filter);
/**
* @brief Config HPF (high pass filter) for output data
*
* The cutoff frequency of the HPF depends on the selected output data rate
* (ODR). The following table shows the possible values of parameter \p cutoff
* and the cutoff frequencies for the according ODRs. All frequencies are
* given in Hz.
*
*
* | cutoff / ODR | 12.5 | 25 | 50 | 100 | 200 | 400 | 800 |
* |-------------:|:-----:|:-----:|:-----:|:----:|:----:|:----:|:---:|
* | 0 | 1 | 2 | 4 | 8 | 15 | 30 | 56 |
* | 1 | 0.5 | 1 | 2 | 4 | 8 | 15 | 30 |
* | 2 | 0.2 | 0.5 | 1 | 2 | 4 | 8 | 15 |
* | 3 | 0.1 | 0.2 | 0.5 | 1 | 2 | 4 | 8 |
* | 4 | 0.05 | 0.1 | 0.2 | 0.5 | 1 | 2 | 4 |
* | 5 | 0.02 | 0.05 | 0.1 | 0.2 | 0.5 | 1 | 2 |
* | 6 | 0.01 | 0.02 | 0.05 | 0.1 | 0.2 | 0.5 | 1 |
* | 7 | 0.005 | 0.01 | 0.02 | 0.05 | 0.1 | 0.2 | 0.5 |
* | 8 | 0.002 | 0.005 | 0.01 | 0.02 | 0.05 | 0.1 | 0.2 |
* | 9 | 0.001 | 0.002 | 0.005 | 0.01 | 0.02 | 0.05 | 0.1 |
*
*
* @note This function is available only if module `l3gxxxx_config` is used.
*
* @param[in] dev device descriptor of the L3Gxxxx sensor
* @param[in] mode high pass filter mode, see #l3gxxxx_hpf_mode_t
* @param[in] cutoff cutoff frequency (depends on ODR) [0 ... 9]
*
* @retval L3GXXXX_OK on success
* @retval L3GXXXX_ERROR_* negative error code, see #l3gxxxx_error_codes_t
*/
int l3gxxxx_config_hpf(const l3gxxxx_t *dev,
l3gxxxx_hpf_mode_t mode, uint8_t cutoff);
/**
* @brief Set HPF (high pass filter) reference
*
* Used to set the reference for HPF in reference mode #L3GXXXX_HPF_REFERENCE
* and to reset the HPF in autoreset mode #L3GXXXX_HPF_AUTORESET.
* Reference is given as two's complement.
*
* @note This function is available only if module `l3gxxxx_config` is used.
*
* @param[in] dev device descriptor of the L3Gxxxx sensor
* @param[in] ref reference in #L3GXXXX_HPF_REFERENCE mode, otherwise ignored
*
* @retval L3GXXXX_OK on success
* @retval L3GXXXX_ERROR_* negative error code, see #l3gxxxx_error_codes_t
*/
int l3gxxxx_set_hpf_ref(const l3gxxxx_t *dev, int8_t ref);
/**
* @brief Get HPF (high pass filter) reference
*
* Returns the content of the REFERENCE register. In normal mode
* #L3GXXXX_HPF_NORMAL, it is also used to reset the HPF.
*
* @note This function is available only if module `l3gxxxx_config` is used.
*
* @param[in] dev device descriptor of the L3Gxxxx sensor
* @param[out] ref reference
*
* @retval L3GXXXX_OK on success
* @retval L3GXXXX_ERROR_* negative error code, see #l3gxxxx_error_codes_t
*/
int l3gxxxx_get_hpf_ref(const l3gxxxx_t *dev, int8_t *ref);
#endif /* IS_USED(MODULE_L3GXXXX_CONFIG) || DOXYGEN */
/** @} */
#if IS_USED(MODULE_L3GXXXX_IRQ) || DOXYGEN
/**
* @name Interrupt configuration and handling
* @{
*/
/**
* @brief Enable or disable event and/or data interrupts on signal `INT1` and `INT2/DRDY`
*
* This function is used to enable or disable interrupts. The parameter \p mask
* is the ORed value of the interrupts that are enabled or disabled by the
* function call.
*
* @pre MCU GPIO pins for the `INT1` signal respectively the `INT2/DRDY`
* signal have to be defined for enabled interrupts
* (l3gxxxx_params_t::int1_pin and l3gxxxx_params_t::int2_pin).
*
* @note This function is available only if module `l3gxxxx_irq_data` and/or
* module `l3gxxxx_irq_event` are used.
*
* @param[in] dev device descriptor of the L3Gxxxx sensor
* @param[in] mask interrupts to be enabled or disabled
* @param[in] enable enable the interrupts if true, otherwise disable them
*
* @retval L3GXXXX_OK on success
* @retval L3GXXXX_ERROR_* negative error code, see #l3gxxxx_error_codes_t
*/
int l3gxxxx_enable_int(const l3gxxxx_t *dev,
l3gxxxx_int_types_t mask, bool enable);
/**
* @brief Wait for event and/or data interrupts on signals `INT1` and `INT2/DRDY`
*
* The function waits for a configured interrupt and returns the sources of
* triggered interrupts. Since data interrupts (data ready and FIFO status)
* and event interrupts (axis movement and wake-up) use different signals,
* both data and event interrupts can occur simultaneously. The return
* value of type l3gxxxx_int_src_t contains all sources for which the interrupt
* conditions are fulfilled at the same time.
*
* @pre MCU GPIO pins for the `INT1` signal respectively the `INT2/DRDY`
* signal have to be defined for enabled interrupts
* (l3gxxxx_params_t::int1_pin and l3gxxxx_params_t::int2_pin).
*
* @note This function is available only if module `l3gxxxx_irq_data` and/or
* module `l3gxxxx_irq_event` are used.
*
* @param[in] dev device descriptor of the L3Gxxxx sensor
*
* @retval L3GXXXX_OK on success
* @retval L3GXXXX_ERROR_* negative error code, see #l3gxxxx_error_codes_t
*/
l3gxxxx_int_src_t l3gxxxx_wait_int(l3gxxxx_t *dev);
#if IS_USED(MODULE_L3GXXXX_IRQ_EVENT) || DOXYGEN
/**
* @brief Set new configuration for event interrupt generation
*
* The event interrupt generator produces interrupts (axis movement and wake-up)
* on signal `INT1` whenever the angular rate of one or more axes becomes higher
* or lower than defined thresholds.
*
* This function can be used at runtime to change the configuration of
* the interrupt conditions for event interrupt generation. This includes
* thresholds for all axes, enabled threshold interrupts, filter selection
* used for interrupt generation and other parameters, see
* l3gxxxx_int_event_cfg_t for details.
*
* @note This function is available only if module `l3gxxxx_irq_event` is used.
*
* @param[in] dev device descriptor of the L3Gxxxx sensor
* @param[in] cfg event interrupt generator configuration
*
* @retval L3GXXXX_OK on success
* @retval L3GXXXX_ERROR_* negative error code, see #l3gxxxx_error_codes_t
*/
int l3gxxxx_set_int_event_cfg(const l3gxxxx_t *dev,
const l3gxxxx_int_event_cfg_t *cfg);
#if IS_USED(MODULE_L3GXXXX_CONFIG) || DOXYGEN
/**
* @brief Get current configuration of event interrupt generation
*
* This function can be used to retrieve the configuration of interrupt
* conditions currently used to generate event interrupts. See
* l3gxxxx_int_event_cfg_t for details.
*
* @note This function is available only if module `l3gxxxx_irq_event` and
* module `l3gxxxx_irq_config` are used.
*
* @param[in] dev device descriptor of the L3Gxxxx sensor
* @param[out] cfg event interrupt generator configuration
*
* @retval L3GXXXX_OK on success
* @retval L3GXXXX_ERROR_* negative error code, see #l3gxxxx_error_codes_t
*/
int l3gxxxx_get_int_event_cfg(const l3gxxxx_t *dev,
l3gxxxx_int_event_cfg_t *cfg);
#endif /* IS_USED(MODULE_L3GXXXX_CONFIG) || DOXYGEN */
#endif /* IS_USED(MODULE_L3GXXXX_IRQ_EVENT) || DOXYGEN */
/** @} */
#endif /* IS_USED(MODULE_L3GXXXX_IRQ) || DOXYGEN */
/**
* @name Low level interface functions
* @{
*/
/**
* @brief Direct write to register
*
* @note This function should only be used to do something special that
* is not covered by the high level interface AND if you exactly know what you
* do and what effects it might have. Please be aware that it might affect the
* high level interface.
*
* @param[in] dev device descriptor of the L3Gxxxx sensor
* @param[in] reg address of the first register to be changed
* @param[in] data pointer to the data to be written to the register
* @param[in] len number of bytes to be written to the register
* @retval L3GXXXX_OK on success
* @retval L3GXXXX_ERROR_* negative error code, see #l3gxxxx_error_codes_t
*/
int l3gxxxx_reg_write(const l3gxxxx_t *dev,
uint8_t reg, const uint8_t *data, uint8_t len);
/**
* @brief Direct read from register
*
* @note This function should only be used to do something special that
* is not covered by the high level interface AND if you exactly know what you
* do and what effects it might have. Please be aware that it might affect the
* high level interface.
*
* @param[in] dev device descriptor of the L3Gxxxx sensor
* @param[in] reg address of the first register to be read
* @param[out] data pointer to the data to be read from the register
* @param[in] len number of bytes to be read from the register
* @retval L3GXXXX_OK on success
* @retval L3GXXXX_ERROR_* negative error code, see #l3gxxxx_error_codes_t
*/
int l3gxxxx_reg_read(const l3gxxxx_t *dev,
uint8_t reg, uint8_t *data, uint8_t len);
/** @} */
#ifdef __cplusplus
}
#endif
#endif /* L3GXXXX_H */
/** @} */