/* * Copyright (C) 2014-2016 Freie Universität Berlin * Copyright (C) 2018 HAW-Hamburg * Copyright (C) 2021 Inria * * This file is subject to the terms and conditions of the GNU Lesser General * Public License v2.1. See the file LICENSE in the top level directory for more * details. */ /** * @ingroup cpu_stm32 * @ingroup drivers_periph_adc * @{ * * @file * @brief Low-level ADC driver implementation * * @author Hauke Petersen * @author Michel Rottleuthner * @author Francisco Molina * * @} */ #include "cpu.h" #include "mutex.h" #include "periph/adc.h" #include "periph_conf.h" #include "periph/vbat.h" #include "ztimer.h" /** * @brief Default VBAT undefined value */ #ifndef VBAT_ADC #define VBAT_ADC ADC_UNDEF #endif /** * @brief Allocate lock for the ADC device * * All STM32WL CPUs we support so far only come with a single ADC device. */ static mutex_t lock = MUTEX_INIT; static inline void prep(void) { mutex_lock(&lock); periph_clk_en(APB2, RCC_APB2ENR_ADCEN); } static inline void done(void) { periph_clk_dis(APB2, RCC_APB2ENR_ADCEN); mutex_unlock(&lock); } int adc_init(adc_t line) { /* check if the line is valid */ if (line >= ADC_NUMOF) { return -1; } /* lock device and enable its peripheral clock */ prep(); /* configure the pin */ if (adc_config[line].pin != GPIO_UNDEF) { gpio_init_analog(adc_config[line].pin); } /* init ADC line only if it wasn't already initialized */ if (!(ADC->CR & (ADC_CR_ADEN))) { /* set prescaler to 0 to let the ADC run with maximum speed */ ADC_COMMON->CCR &= ~(ADC_CCR_PRESC); /* set ADC clock to PCLK/2 otherwise */ ADC->CFGR2 &= ~(ADC_CFGR2_CKMODE_0 | ADC_CFGR2_CKMODE_1); ADC->CFGR2 |= ADC_CFGR2_CKMODE_0; /* enable ADC internal voltage regulator and wait for startup period */ ADC->CR |= (ADC_CR_ADVREGEN); #if IS_USED(MODULE_ZTIMER_USEC) ztimer_sleep(ZTIMER_USEC, ADC_T_ADCVREG_STUP_US); #else /* to avoid using ZTIMER_USEC unless already included round up the internal voltage regulator start up to 1ms */ ztimer_sleep(ZTIMER_MSEC, 1); #endif /* ´start automatic calibration and wait for it to complete */ ADC->CR |= ADC_CR_ADCAL; while (ADC->CR & ADC_CR_ADCAL) {} /* clear ADRDY by writing it*/ ADC->ISR |= (ADC_ISR_ADRDY); /* enable ADC and wait for it to be ready */ ADC->CR |= (ADC_CR_ADEN); while ((ADC->ISR & ADC_ISR_ADRDY) == 0) {} /* set sequence length to 1 conversion */ ADC->CFGR1 &= ~ADC_CFGR1_CONT; /* Sampling time of 3.5 ADC clocks for all channels*/ ADC->SMPR = 0x0101; } /* free the device again */ done(); return 0; } int32_t adc_sample(adc_t line, adc_res_t res) { int sample; /* check if resolution is applicable */ if (res & 0x3) { return -1; } /* lock and power on the ADC device */ prep(); /* check if this is the VBAT line */ if (IS_USED(MODULE_PERIPH_VBAT) && line == VBAT_ADC) { vbat_enable(); } /* first clear resolution */ ADC->CFGR1 &= ~ADC_CFGR1_RES; /* then set resolution to the required value*/ ADC->CFGR1 |= res; /* specify channel for regular conversion */ ADC->CHSELR = (1 << adc_config[line].chan); /* start conversion and wait for it to complete */ ADC->CR |= ADC_CR_ADSTART; while (!(ADC->ISR & ADC_ISR_EOC)) {} /* read the sample */ sample = (int)ADC->DR; /* check if this is the VBAT line */ if (IS_USED(MODULE_PERIPH_VBAT) && line == VBAT_ADC) { vbat_disable(); } /* free the device again */ done(); return sample; }