/* * Copyright (C) 2014-2016 Freie Universität Berlin * * This file is subject to the terms and conditions of the GNU Lesser General * Public License v2.1. See the file LICENSE in the top level directory for more * details. */ /** * @ingroup cpu_stm32 * @ingroup drivers_periph_timer * @{ * * @file * @brief Low-level timer driver implementation * * @author Hauke Petersen * @author Thomas Eichinger * * @} */ #include "cpu.h" #include "periph/timer.h" /** * @brief Interrupt context for each configured timer */ static timer_isr_ctx_t isr_ctx[TIMER_NUMOF]; /** * @brief Get the timer device */ static inline TIM_TypeDef *dev(tim_t tim) { return timer_config[tim].dev; } /** * @brief Get the number of channels of the timer device */ static unsigned channel_numof(tim_t tim) { if (timer_config[tim].channel_numof) { return timer_config[tim].channel_numof; } /* backwards compatibility with older periph_conf.h files when all STM32 * had exactly 4 channels */ return TIMER_CHANNEL_NUMOF; } #ifdef MODULE_PERIPH_TIMER_PERIODIC /** * @brief Helper macro to get channel bit in timer/channel bitmap */ #define CHAN_BIT(tim, chan) (1 << chan) << (TIMER_CHANNEL_NUMOF * (tim & 1)) /** * @brief Bitmap for compare channel disable after match */ static uint8_t _oneshot[(TIMER_NUMOF+1)/2]; /** * @brief Clear interrupt enable after the interrupt has fired */ static inline void set_oneshot(tim_t tim, int chan) { _oneshot[tim >> 1] |= CHAN_BIT(tim, chan); } /** * @brief Enable interrupt with every wrap-around of the timer */ static inline void clear_oneshot(tim_t tim, int chan) { _oneshot[tim >> 1] &= ~CHAN_BIT(tim, chan); } static inline bool is_oneshot(tim_t tim, int chan) { return _oneshot[tim >> 1] & CHAN_BIT(tim, chan); } #else /* !MODULE_PERIPH_TIMER_PERIODIC */ static inline void set_oneshot(tim_t tim, int chan) { (void)tim; (void)chan; } static inline bool is_oneshot(tim_t tim, int chan) { (void)tim; (void)chan; return true; } #endif /* MODULE_PERIPH_TIMER_PERIODIC */ int timer_init(tim_t tim, uint32_t freq, timer_cb_t cb, void *arg) { /* check if device is valid */ if (tim >= TIMER_NUMOF) { return -1; } /* remember the interrupt context */ isr_ctx[tim].cb = cb; isr_ctx[tim].arg = arg; /* enable the peripheral clock */ periph_clk_en(timer_config[tim].bus, timer_config[tim].rcc_mask); /* configure the timer as upcounter in continuous mode */ dev(tim)->CR1 = 0; dev(tim)->CR2 = 0; dev(tim)->ARR = timer_config[tim].max; /* set prescaler */ dev(tim)->PSC = ((periph_timer_clk(timer_config[tim].bus) / freq) - 1); /* generate an update event to apply our configuration */ dev(tim)->EGR = TIM_EGR_UG; /* enable the timer's interrupt */ NVIC_EnableIRQ(timer_config[tim].irqn); /* reset the counter and start the timer */ timer_start(tim); return 0; } int timer_set_absolute(tim_t tim, int channel, unsigned int value) { if ((unsigned)channel >= channel_numof(tim)) { return -1; } unsigned irqstate = irq_disable(); set_oneshot(tim, channel); #ifdef MODULE_PERIPH_TIMER_PERIODIC if (dev(tim)->ARR == TIM_CHAN(tim, channel)) { dev(tim)->ARR = timer_config[tim].max; } #endif /* clear spurious IRQs */ dev(tim)->SR &= ~(TIM_SR_CC1IF << channel); TIM_CHAN(tim, channel) = (value & timer_config[tim].max); /* enable IRQ */ dev(tim)->DIER |= (TIM_DIER_CC1IE << channel); irq_restore(irqstate); return 0; } uword_t timer_query_freqs_numof(tim_t dev) { (void)dev; /* Prescaler values from 0 to UINT16_MAX are supported */ return UINT16_MAX + 1; } uint32_t timer_query_freqs(tim_t dev, uword_t index) { if (index > UINT16_MAX) { return 0; } return periph_timer_clk(timer_config[dev].bus) / (index + 1); } int timer_set(tim_t tim, int channel, unsigned int timeout) { unsigned value = (dev(tim)->CNT + timeout) & timer_config[tim].max; if ((unsigned)channel >= channel_numof(tim)) { return -1; } unsigned irqstate = irq_disable(); set_oneshot(tim, channel); #ifdef MODULE_PERIPH_TIMER_PERIODIC if (dev(tim)->ARR == TIM_CHAN(tim, channel)) { dev(tim)->ARR = timer_config[tim].max; } #endif TIM_CHAN(tim, channel) = value; /* clear spurious IRQs * note: This might also clear the IRQ just set, but that is handled below * anyway. */ dev(tim)->SR &= ~(TIM_SR_CC1IF << channel); /* enable IRQ */ dev(tim)->DIER |= (TIM_DIER_CC1IE << channel); /* calculate time till timeout */ value = (value - dev(tim)->CNT) & timer_config[tim].max; if (value > timeout) { /* time till timeout is larger than requested --> timer already expired * ==> let's make sure we have an IRQ pending :) */ dev(tim)->EGR |= (TIM_EGR_CC1G << channel); } irq_restore(irqstate); return 0; } #ifdef MODULE_PERIPH_TIMER_PERIODIC int timer_set_periodic(tim_t tim, int channel, unsigned int value, uint8_t flags) { if ((unsigned)channel >= channel_numof(tim)) { return -1; } unsigned irqstate = irq_disable(); clear_oneshot(tim, channel); if (flags & TIM_FLAG_SET_STOPPED) { timer_stop(tim); } if (flags & TIM_FLAG_RESET_ON_SET) { /* setting COUNT gives us an interrupt on all channels */ dev(tim)->CNT = 0; /* wait for the interrupt & clear it */ while (dev(tim)->SR == 0) {} dev(tim)->SR = 0; } TIM_CHAN(tim, channel) = value; /* clear spurious IRQs */ dev(tim)->SR &= ~(TIM_SR_CC1IF << channel); /* enable IRQ */ dev(tim)->DIER |= (TIM_DIER_CC1IE << channel); if (flags & TIM_FLAG_RESET_ON_MATCH) { dev(tim)->ARR = value; } irq_restore(irqstate); return 0; } #endif /* MODULE_PERIPH_TIMER_PERIODIC */ int timer_clear(tim_t tim, int channel) { if ((unsigned)channel >= channel_numof(tim)) { return -1; } unsigned irqstate = irq_disable(); /* disable IRQ */ dev(tim)->DIER &= ~(TIM_DIER_CC1IE << channel); /* clear spurious IRQs */ dev(tim)->SR &= ~(TIM_SR_CC1IF << channel); irq_restore(irqstate); #ifdef MODULE_PERIPH_TIMER_PERIODIC if (dev(tim)->ARR == TIM_CHAN(tim, channel)) { dev(tim)->ARR = timer_config[tim].max; } #endif return 0; } unsigned int timer_read(tim_t tim) { return (unsigned int)dev(tim)->CNT; } void timer_start(tim_t tim) { unsigned irqstate = irq_disable(); dev(tim)->CR1 |= TIM_CR1_CEN; irq_restore(irqstate); } void timer_stop(tim_t tim) { unsigned irqstate = irq_disable(); dev(tim)->CR1 &= ~(TIM_CR1_CEN); irq_restore(irqstate); } static inline void irq_handler(tim_t tim) { uint32_t top = dev(tim)->ARR; uint32_t status = dev(tim)->SR & dev(tim)->DIER; /* clear interrupts which we are about to service */ /* Note, the flags in the SR register can be cleared by software, but * setting them has no effect on the register. Only the hardware can set * them. */ dev(tim)->SR = ~status; for (unsigned int i = 0; status; i++) { uint32_t msk = TIM_SR_CC1IF << i; /* check if interrupt flag is set */ if ((status & msk) == 0) { continue; } status &= ~msk; /* interrupt flag gets set for all channels > ARR */ if (TIM_CHAN(tim, i) > top) { continue; } /* disable Interrupt */ if (is_oneshot(tim, i)) { dev(tim)->DIER &= ~msk; } isr_ctx[tim].cb(isr_ctx[tim].arg, i); } cortexm_isr_end(); } #ifdef TIMER_0_ISR void TIMER_0_ISR(void) { irq_handler(0); } #endif #ifdef TIMER_1_ISR void TIMER_1_ISR(void) { irq_handler(1); } #endif #ifdef TIMER_2_ISR void TIMER_2_ISR(void) { irq_handler(2); } #endif #ifdef TIMER_3_ISR void TIMER_3_ISR(void) { irq_handler(3); } #endif #ifdef TIMER_4_ISR void TIMER_4_ISR(void) { irq_handler(4); } #endif