/* * Copyright (C) 2014 Freie UniversitÀt Berlin * Copyright (C) 2014 PHYTEC Messtechnik GmbH * Copyright (C) 2015-2018 Eistec AB * * This file is subject to the terms and conditions of the GNU Lesser * General Public License v2.1. See the file LICENSE in the top level * directory for more details. */ /** * @ingroup cpu_kinetis * @ingroup drivers_periph_i2c * * @{ * * @file * @brief Low-level I2C driver implementation * * @author Johann Fischer * @author Joakim NohlgÄrd * * @} */ #include #include #include "cpu.h" #include "irq.h" #include "bit.h" #include "mutex.h" #include "thread.h" #include "thread_flags.h" #include "periph_conf.h" #include "periph/i2c.h" #define ENABLE_DEBUG (0) /* Define ENABLE_TRACE to 1 to enable printing of all TX/RX bytes to UART for extra verbose debugging */ #define ENABLE_TRACE (1) /* Define ENABLE_INIT_DEBUG to 1 to enable DEBUG prints in i2c_init. Currently * this causes the system to hang when running i2c_init during boot because of * uninitialized stdio UART */ #define ENABLE_INIT_DEBUG (0) #include "debug.h" #if ENABLE_TRACE #define TRACE(...) DEBUG(__VA_ARGS__) #else #define TRACE(...) #endif /** * @brief Thread flag used internally for signaling between ISR and user thread */ #define THREAD_FLAG_KINETIS_I2C (1u << 8) /** * @brief Array of I2C module clock dividers * * The index in this array is the I2C_F setting number */ /* * Divider values were copied from K22F reference manual */ static const uint16_t i2c_dividers[] = { 20, 22, 24, 26, 28, 30, 34, 40, /* 0x00 ~ 0x07 */ 28, 32, 36, 40, 44, 48, 56, 68, /* 0x08 ~ 0x0f */ 48, 56, 64, 72, 80, 88, 104, 128, /* 0x10 ~ 0x17 */ 80, 96, 112, 128, 144, 160, 192, 240, /* 0x18 ~ 0x1f */ 160, 192, 224, 256, 288, 320, 384, 480, /* 0x20 ~ 0x27 */ 320, 384, 448, 512, 576, 640, 768, 960, /* 0x28 ~ 0x2f */ 640, 768, 896, 1024, 1152, 1280, 1536, 1920, /* 0x30 ~ 0x37 */ 1280, 1536, 1792, 2048, 2304, 2560, 3072, 3840, /* 0x38 ~ 0x3f */ }; /** * @brief I2C IRQ reception state */ typedef struct { uint8_t *datap; /**< pointer to output buffer */ size_t bytes_left; /**< how many bytes left to receive */ } i2c_rx_t; /** * @brief I2C IRQ transmission state */ typedef struct { const uint8_t *datap; /**< pointer to input buffer */ size_t bytes_left; /**< how many bytes left to transmit */ } i2c_tx_t; /** * @brief Driver internal state */ typedef struct { mutex_t mtx; /**< Mutex preventing multiple users of the same bus */ kernel_pid_t pid; /**< PID of thread waiting for a transfer to complete */ uint8_t active; /**< State variable to help catch user mistakes */ union { i2c_tx_t tx; /**< State of ongoing transmission sequence */ i2c_rx_t rx; /**< State of ongoing reception sequence */ }; int retval; /**< return value from ISR */ } i2c_state_t; static i2c_state_t i2c_state[I2C_NUMOF]; int i2c_acquire(i2c_t dev) { assert((unsigned)dev < I2C_NUMOF); mutex_lock(&i2c_state[dev].mtx); i2c_state[dev].pid = thread_getpid(); return 0; } int i2c_release(i2c_t dev) { /* Check that the bus was properly stopped before releasing */ /* It is a programming error to release the bus after sending a start * condition but before sending a stop condition */ assert(i2c_state[dev].active == 0); mutex_unlock(&i2c_state[dev].mtx); return 0; } static uint8_t i2c_find_divider(unsigned freq, unsigned speed) { unsigned diff = UINT_MAX; /* Use maximum divider if nothing matches */ uint8_t F = sizeof(i2c_dividers) / sizeof(i2c_dividers[0]) - 1; /* We avoid using the MULT field to simplify the driver and avoid having to * work around hardware errata on some Kinetis parts * * See: * https://community.nxp.com/thread/377611 * https://mcuoneclipse.com/2012/12/05/kl25z-and-i2c-missing-repeated-start-condition/ * * e6070: I2C: Repeat start cannot be generated if the I2Cx_F[MULT] field is set to a non-zero value * * Description: * If the I2Cx_F[MULT] field is written with a non-zero value, then a repeat * start cannot be generated * * Workaround: * There are two possible workarounds: * 1) Configure I2Cx_F[MULT] to zero if a repeat start has to be generated. * 2) Temporarily set I2Cx_F [MULT] to zero immediately before setting the * Repeat START bit in the I2C C1 register (I2Cx_C1[RSTA]=1) and restore * the I2Cx_F [MULT] field to the original value after the repeated start * has occurred */ for (unsigned k = 0; k < sizeof(i2c_dividers) / sizeof(i2c_dividers[0]); ++k) { /* Test dividers until we find one that gives a good match */ unsigned lim = (speed * i2c_dividers[k]); if (lim >= freq) { if ((lim - freq) < diff) { diff = (lim - freq); F = k; } } } if (ENABLE_INIT_DEBUG) { DEBUG("i2c_divider: speed = %u, freq = %u, diff = %u, F = 0x%02x\n", speed, freq, diff, F); } return F; } static inline void i2c_clear_irq_flags(I2C_Type *i2c) { i2c->S = i2c->S; } void i2c_init(i2c_t dev) { if (ENABLE_INIT_DEBUG) { DEBUG("i2c_init: %u\n", (unsigned) dev); } assert((unsigned)dev < I2C_NUMOF); const i2c_conf_t *conf = &i2c_config[dev]; I2C_Type *i2c = conf->i2c; /* Turn on the module clock gate */ switch ((uintptr_t)i2c) { #ifdef I2C0 case (uintptr_t)I2C0: I2C0_CLKEN(); break; #endif #ifdef I2C1 case (uintptr_t)I2C1: I2C1_CLKEN(); break; #endif #ifdef I2C2 case (uintptr_t)I2C2: I2C2_CLKEN(); break; #endif default: if (ENABLE_INIT_DEBUG) { DEBUG("i2c_init: Unknown I2C device %p\n", (void *)i2c); } return; } i2c_state[dev].mtx = (mutex_t)MUTEX_INIT_LOCKED; i2c_state[dev].active = 0; i2c_state[dev].pid = KERNEL_PID_UNDEF; if (ENABLE_INIT_DEBUG) { DEBUG("i2c_init: init SCL pin\n"); } gpio_init_port(conf->scl_pin, conf->scl_pcr); if (ENABLE_INIT_DEBUG) { DEBUG("i2c_init: init SDA pin\n"); } gpio_init_port(conf->sda_pin, conf->sda_pcr); /* Configure master settings */ i2c->C1 = 0; /* Disable module while messing with the settings */ /* Configure glitch filter register */ #ifdef I2C_FLT_SHEN_MASK i2c->FLT = I2C_FLT_SHEN_MASK; #else i2c->FLT = 0; #endif i2c->F = i2c_find_divider(conf->freq, (unsigned)conf->speed); /* Enable module */ i2c->C1 = I2C_C1_IICEN_MASK; i2c_clear_irq_flags(i2c); NVIC_EnableIRQ(conf->irqn); mutex_unlock(&i2c_state[dev].mtx); } static int i2c_stop(i2c_t dev) { I2C_Type *i2c = i2c_config[dev].i2c; /* Send stop condition */ TRACE("i2c: stop C1=%02x S=%02x\n", (unsigned)i2c->C1, (unsigned)i2c->S); bit_clear8(&i2c->C1, I2C_C1_MST_SHIFT); unsigned timeout = 0x10000; while ((i2c->S & I2C_S_BUSY_MASK) && --timeout) {} i2c_state[dev].active = 0; if (timeout == 0) { /* slave stretches the clock for too long */ DEBUG("i2c: timeout while stopping\n"); return -ETIMEDOUT; } TRACE("i2c: STOP C1=%02x S=%02x\n", (unsigned)i2c->C1, (unsigned)i2c->S); return 0; } static int i2c_tx_addr(i2c_t dev, uint8_t byte) { I2C_Type *i2c = i2c_config[dev].i2c; TRACE("i2c: txa: %02x\n", (unsigned)byte); i2c->D = byte; uint8_t S; uint16_t timeout = UINT16_MAX; do { S = i2c->S; } while (!(S & I2C_S_IICIF_MASK) && --timeout); i2c_clear_irq_flags(i2c); int res = 0; if (S & I2C_S_ARBL_MASK) { DEBUG("i2c: arbitration lost\n"); res = -EAGAIN; } else if (timeout == 0) { /* slave stretches the clock for too long */ DEBUG("i2c: tx timeout\n"); res = -ETIMEDOUT; } else if (S & I2C_S_RXAK_MASK) { DEBUG("i2c: NACK\n"); res = -ENXIO; } if (res < 0) { bit_clear8(&i2c->C1, I2C_C1_MST_SHIFT); i2c_state[dev].active = 0; i2c_clear_irq_flags(i2c); } return res; } static int i2c_start(i2c_t dev, uint16_t addr, unsigned read_flag, uint8_t flags) { I2C_Type *i2c = i2c_config[dev].i2c; TRACE("i2c: start C1=%02x S=%02x\n", (unsigned)i2c->C1, (unsigned)i2c->S); /* Send start condition */ if (i2c->C1 & I2C_C1_MST_MASK) { /* Repeat start */ i2c->C1 |= I2C_C1_IICEN_MASK | I2C_C1_RSTA_MASK | I2C_C1_TX_MASK; } else { /* Initial start */ if (read_flag && (flags & I2C_ADDR10)) { /* 10 bit addressing does not allow reading without a repeated start */ return -EINVAL; } uint16_t timeout = UINT16_MAX; while ((i2c->S & I2C_S_BUSY_MASK) && --timeout) {} if (timeout == 0) { /* Someone else is using the bus for a long time, try again later */ DEBUG("i2c: start timeout\n"); return -EAGAIN; } /* slave -> master transition triggers the initial start condition */ i2c->C1 |= I2C_C1_IICEN_MASK | I2C_C1_MST_MASK | I2C_C1_TX_MASK; } i2c_state[dev].active = 1; TRACE("i2c: Start C1=%02x S=%02x\n", (unsigned)i2c->C1, (unsigned)i2c->S); if (i2c->S & I2C_S_ARBL_MASK) { DEBUG("i2c: arbitration lost\n"); i2c_clear_irq_flags(i2c); bit_clear8(&i2c->C1, I2C_C1_MST_SHIFT); i2c_state[dev].active = 0; return -EAGAIN; } if (flags & I2C_ADDR10) { /* 10 bit addressing */ /* Send 10 bit address tag + 2 msb + R/W flag */ uint8_t msb = (addr >> 8); uint8_t lsb = (addr & 0xff); uint8_t addr_rw = I2C_10BIT_MAGIC | (msb << 1); if (read_flag) { addr_rw |= I2C_READ; } int res = i2c_tx_addr(dev, addr_rw); if (res < 0) { return res; } if (!read_flag) { /* Send lower 8 bits of address */ res = i2c_tx_addr(dev, lsb); } return res; } /* 7 bit addressing */ /* Send address + R/W flag */ uint8_t addr_rw = (addr << 1); if (read_flag) { addr_rw |= I2C_READ; } return i2c_tx_addr(dev, addr_rw); } int i2c_read_bytes(i2c_t dev, uint16_t addr, void *data, size_t len, uint8_t flags) { assert((data != NULL) || (len == 0)); I2C_Type *i2c = i2c_config[dev].i2c; DEBUG("i2c: r a:%02x, l:%u, f:%02x\n", addr, (unsigned)len, (unsigned)flags); if (len == 1) { /* Send NACK after next byte */ bit_set8(&i2c->C1, I2C_C1_TXAK_SHIFT); } else { bit_clear8(&i2c->C1, I2C_C1_TXAK_SHIFT); } if (!(flags & I2C_NOSTART)) { /* Send start condition and address */ int res = i2c_start(dev, addr, 1, flags); if (res < 0) { return res; } } if (len > 0) { /* We need IRQs enabled for interrupt based transfers */ assert(!__get_PRIMASK()); assert(!irq_is_in()); bit_clear8(&i2c->C1, I2C_C1_TX_SHIFT); /* Configure IRQ transfer */ i2c_state[dev].rx.datap = data; i2c_state[dev].rx.bytes_left = len; i2c_state[dev].retval = 0; bit_set8(&i2c->C1, I2C_C1_IICIE_SHIFT); /* Initiate master receive mode by reading the data register once when * the C1[TX] bit is cleared and C1[MST] is set */ volatile uint8_t dummy; dummy = i2c->D; ++dummy; /* Wait until the ISR signals back */ TRACE("i2c: read C1=%02x S=%02x\n", (unsigned)i2c->C1, (unsigned)i2c->S); thread_flags_t tflg = thread_flags_wait_any(THREAD_FLAG_KINETIS_I2C | THREAD_FLAG_TIMEOUT); TRACE("i2c: rx done, %u left, ret: %d\n", i2c_state[dev].rx.bytes_left, i2c_state[dev].retval); if (!(tflg & THREAD_FLAG_KINETIS_I2C)) { bit_clear8(&i2c->C1, I2C_C1_MST_SHIFT); i2c_state[dev].active = 0; return -ETIMEDOUT; } if (i2c_state[dev].retval < 0) { /* An error occurred */ /* The module has been stopped from the ISR, no need to clear the MST bit */ return i2c_state[dev].retval; } } if (!(flags & I2C_NOSTOP)) { int res = i2c_stop(dev); if (res < 0) { return res; } } return 0; } int i2c_write_bytes(i2c_t dev, uint16_t addr, const void *data, size_t len, uint8_t flags) { assert((data != NULL) || (len == 0)); I2C_Type *i2c = i2c_config[dev].i2c; DEBUG("i2c: w a:%02x, l:%u, f:%02x\n", addr, (unsigned)len, (unsigned)flags); if (!(flags & I2C_NOSTART)) { int res = i2c_start(dev, addr, 0, flags); if (res < 0) { return res; } } if (len > 0) { /* We need IRQs enabled for interrupt based transfers */ assert(!__get_PRIMASK()); assert(!irq_is_in()); /* Configure IRQ transfer */ bit_set8(&i2c->C1, I2C_C1_TX_SHIFT); i2c_state[dev].tx.datap = data; i2c_state[dev].tx.bytes_left = len; i2c_state[dev].retval = 0; bit_set8(&i2c->C1, I2C_C1_IICIE_SHIFT); TRACE("i2c: write C1=%02x S=%02x\n", (unsigned)i2c->C1, (unsigned)i2c->S); /* Initiate transfer by writing the first byte, the remaining bytes will * be fed by the ISR */ i2c->D = *((const uint8_t *)data); /* Wait until the ISR signals back */ thread_flags_t tflg = thread_flags_wait_any(THREAD_FLAG_KINETIS_I2C | THREAD_FLAG_TIMEOUT); TRACE("i2c: rx done, %u left, ret: %d\n", i2c_state[dev].rx.bytes_left, i2c_state[dev].retval); if (!(tflg & THREAD_FLAG_KINETIS_I2C)) { bit_clear8(&i2c->C1, I2C_C1_MST_SHIFT); i2c_state[dev].active = 0; return -ETIMEDOUT; } if (i2c_state[dev].retval < 0) { /* An error occurred */ /* The module has been stopped from the ISR, no need to clear the MST bit */ return i2c_state[dev].retval; } } if (!(flags & I2C_NOSTOP)) { int res = i2c_stop(dev); if (res < 0) { return res; } } return 0; } static inline void i2c_irq_signal_done(I2C_Type *i2c, kernel_pid_t pid) { thread_flags_set((thread_t *)thread_get(pid), THREAD_FLAG_KINETIS_I2C); bit_clear8(&i2c->C1, I2C_C1_IICIE_SHIFT); } /** * @brief Master transmit mode IRQ handler */ static void i2c_irq_mst_tx_handler(I2C_Type *i2c, i2c_state_t *state, uint8_t S) { size_t len = state->tx.bytes_left; assert(len != 0); /* This only happens if this periph driver is broken */ --len; state->tx.bytes_left = len; if (len == 0) { /* We are done, NACK on the last byte is OK */ DEBUG("i2c: TX done\n"); i2c_irq_signal_done(i2c, state->pid); } else { if (S & I2C_S_RXAK_MASK) { /* NACK */ /* Abort master transfer */ DEBUG("i2c: NACK\n"); bit_clear8(&i2c->C1, I2C_C1_MST_SHIFT); state->active = 0; state->retval = -EIO; i2c_irq_signal_done(i2c, state->pid); } /* transmit the next byte */ /* Increment first, datap points to the last byte transmitted */ ++state->tx.datap; i2c->D = *state->tx.datap; TRACE("i2c: tx: %02x\n", (unsigned)*(state->tx.datap)); } } /** * @brief Master receive mode IRQ handler */ static void i2c_irq_mst_rx_handler(I2C_Type *i2c, i2c_state_t *state) { size_t len = state->rx.bytes_left; assert(len != 0); /* This only happens if this periph driver is broken */ --len; if (len == 1) { /* Send NACK after the next byte */ bit_set8(&i2c->C1, I2C_C1_TXAK_SHIFT); } else if (len == 0) { /* Switching the module to TX mode lets us read the data register * without triggering a new reception */ bit_set8(&i2c->C1, I2C_C1_TX_SHIFT); i2c_irq_signal_done(i2c, state->pid); } state->rx.bytes_left = len; /* Read data reception buffer, this will trigger reception of the following * byte iff TX and MST bits in the C1 register are set */ *state->rx.datap = i2c->D; TRACE("i2c: rx: %02x\n", (unsigned)*(state->rx.datap)); ++state->rx.datap; } void i2c_irq_handler(i2c_t dev) { I2C_Type *i2c = i2c_config[dev].i2c; i2c_state_t *state = &i2c_state[dev]; uint8_t S = i2c->S; /* Clear IRQ flags */ i2c->S = S; if (i2c->C1 & I2C_C1_MST_MASK) { /* Master mode handler */ if (S & I2C_S_ARBL_MASK) { DEBUG("i2c: arbitration lost\n"); /* Abort master transfer */ bit_clear8(&i2c->C1, I2C_C1_MST_SHIFT); state->active = 0; state->retval = -EAGAIN; i2c_irq_signal_done(i2c, state->pid); } if (i2c->C1 & I2C_C1_TX_MASK) { /* Transmit mode */ i2c_irq_mst_tx_handler(i2c, state, S); } else { /* Receive mode */ i2c_irq_mst_rx_handler(i2c, state); } } else { /* TODO: Slave mode handler goes here */ } cortexm_isr_end(); } #ifdef I2C_0_ISR void I2C_0_ISR(void) { i2c_irq_handler(I2C_DEV(0)); } #endif /* I2C_0_ISR */ #ifdef I2C_1_ISR void I2C_1_ISR(void) { i2c_irq_handler(I2C_DEV(1)); } #endif /* I2C_1_ISR */