/* * Copyright (C) 2014 Freie Universität Berlin * * This file is subject to the terms and conditions of the GNU Lesser General * Public License v2.1. See the file LICENSE in the top level directory for more * details. */ /** * @ingroup cpu_samd21 * @{ * * @file * @brief Low-level SPI driver implementation * * @author Thomas Eichinger * @author Troels Hoffmeyer * @author Hauke Petersen * @author Joakim Gebart * * @} */ #include "cpu.h" #include "mutex.h" #include "periph/gpio.h" #include "periph/spi.h" #include "periph_conf.h" #include "board.h" #define ENABLE_DEBUG (0) #include "debug.h" #if SPI_0_EN || SPI_1_EN /** * @brief Array holding one pre-initialized mutex for each SPI device */ static mutex_t locks[] = { #if SPI_0_EN [SPI_0] = MUTEX_INIT, #endif #if SPI_1_EN [SPI_1] = MUTEX_INIT, #endif #if SPI_2_EN [SPI_2] = MUTEX_INIT #endif }; int spi_init_master(spi_t dev, spi_conf_t conf, spi_speed_t speed) { SercomSpi* spi_dev = 0; uint8_t dopo = 0; uint8_t dipo = 0; uint8_t cpha = 0; uint8_t cpol = 0; uint32_t f_baud = 0; switch(speed) { case SPI_SPEED_100KHZ: f_baud = 100000; break; case SPI_SPEED_400KHZ: f_baud = 400000; break; case SPI_SPEED_1MHZ: f_baud = 1000000; break; case SPI_SPEED_5MHZ: #if CLOCK_CORECLOCK >= 5000000 f_baud = 5000000; break; #else return -1; #endif case SPI_SPEED_10MHZ: #if CLOCK_CORECLOCK >= 10000000 f_baud = 10000000; break; #else return -1; #endif } switch(conf) { case SPI_CONF_FIRST_RISING: /**< first data bit is transacted on the first rising SCK edge */ cpha = 0; cpol = 0; break; case SPI_CONF_SECOND_RISING:/**< first data bit is transacted on the second rising SCK edge */ cpha = 1; cpol = 0; break; case SPI_CONF_FIRST_FALLING:/**< first data bit is transacted on the first falling SCK edge */ cpha = 0; cpol = 1; break; case SPI_CONF_SECOND_FALLING:/**< first data bit is transacted on the second falling SCK edge */ cpha = 1; cpol = 1; break; } switch(dev) { #ifdef SPI_0_EN case SPI_0: spi_dev = &SPI_0_DEV; /* Enable sercom4 in power manager */ PM->APBCMASK.reg |= PM_APBCMASK_SERCOM4; GCLK->CLKCTRL.reg = (uint32_t)((GCLK_CLKCTRL_CLKEN | GCLK_CLKCTRL_GEN_GCLK0 | (SERCOM4_GCLK_ID_CORE << GCLK_CLKCTRL_ID_Pos))); /* Setup clock */ while (GCLK->STATUS.bit.SYNCBUSY); /* Mux enable*/ SPI_0_SCLK_DEV.PINCFG[ SPI_0_SCLK_PIN ].bit.PMUXEN = 1; SPI_0_MISO_DEV.PINCFG[ SPI_0_MISO_PIN ].bit.PMUXEN = 1; SPI_0_MOSI_DEV.PINCFG[ SPI_0_MOSI_PIN ].bit.PMUXEN = 1; /*Set mux function to spi. seperate registers, for even or odd pins */ SPI_0_SCLK_DEV.PMUX[ SPI_0_SCLK_PIN / 2].bit.PMUXE = 5; SPI_0_MISO_DEV.PMUX[ SPI_0_MISO_PIN / 2].bit.PMUXO = 5; SPI_0_MOSI_DEV.PMUX[ SPI_0_MOSI_PIN / 2].bit.PMUXE = 5; /* SCLK+MOSI */ SPI_0_SCLK_DEV.DIRSET.reg = 1 << SPI_0_SCLK_PIN; SPI_0_MOSI_DEV.DIRSET.reg = 1 << SPI_0_MOSI_PIN; /* MISO = input */ /* configure as input */ SPI_0_MISO_DEV.DIRCLR.reg = 1 << SPI_0_MISO_PIN; SPI_0_MISO_DEV.PINCFG[ SPI_0_MISO_PIN ].bit.INEN = true; SPI_0_MISO_DEV.OUTCLR.reg = 1 << SPI_0_MISO_PIN; SPI_0_MISO_DEV.PINCFG[ SPI_0_MISO_PIN ].bit.PULLEN = true; dopo = SPI_0_DOPO; dipo = SPI_0_DIPO; break; #endif #ifdef SPI_1_EN case SPI_1: spi_dev = &SPI_1_DEV; /* Enable sercom5 in power manager */ PM->APBCMASK.reg |= PM_APBCMASK_SERCOM5; /* Setup clock */ /* configure GCLK0 to feed sercom5 */; GCLK->CLKCTRL.reg = (uint32_t)((GCLK_CLKCTRL_CLKEN | GCLK_CLKCTRL_GEN_GCLK0 | (SERCOM5_GCLK_ID_CORE << GCLK_CLKCTRL_ID_Pos))); /* Mux enable*/ SPI_1_SCLK_DEV.PINCFG[ SPI_1_SCLK_PIN ].bit.PMUXEN = 1; SPI_1_MISO_DEV.PINCFG[ SPI_1_MISO_PIN ].bit.PMUXEN = 1; SPI_1_MOSI_DEV.PINCFG[ SPI_1_MOSI_PIN ].bit.PMUXEN = 1; /*Set mux function to spi. seperate registers, for even or odd pins */ SPI_1_SCLK_DEV.PMUX[ SPI_1_SCLK_PIN / 2].bit.PMUXO = 3; SPI_1_MISO_DEV.PMUX[ SPI_1_MISO_PIN / 2].bit.PMUXE = 3; SPI_1_MOSI_DEV.PMUX[ SPI_1_MOSI_PIN / 2].bit.PMUXE = 3; /* SCLK+MOSI */ SPI_1_SCLK_DEV.DIRSET.reg = 1 << SPI_1_SCLK_PIN; SPI_1_MOSI_DEV.DIRSET.reg = 1 << SPI_1_MOSI_PIN; /* MISO = input */ /* configure as input */ SPI_1_MISO_DEV.DIRCLR.reg = 1 << SPI_1_MISO_PIN; SPI_1_MISO_DEV.PINCFG[ SPI_1_MISO_PIN ].bit.INEN = true; SPI_1_MISO_DEV.OUTCLR.reg = 1 << SPI_1_MISO_PIN; SPI_1_MISO_DEV.PINCFG[SPI_1_MISO_PIN].bit.PULLEN = true; dopo = SPI_1_DOPO; dipo = SPI_1_DIPO; break; #endif default: return -1; } spi_dev->CTRLA.bit.ENABLE = 0; /* Disable spi to write confs */ while (spi_dev->SYNCBUSY.reg); spi_dev->CTRLA.reg |= SERCOM_SPI_CTRLA_MODE_SPI_MASTER; while (spi_dev->SYNCBUSY.reg); spi_dev->BAUD.bit.BAUD = (uint8_t) (((uint32_t)CLOCK_CORECLOCK) / (2 * f_baud) - 1); /* Syncronous mode*/ spi_dev->CTRLA.reg |= (SERCOM_SPI_CTRLA_DOPO(dopo)) | (SERCOM_SPI_CTRLA_DIPO(dipo)) | (cpha << SERCOM_SPI_CTRLA_CPHA_Pos) | (cpol << SERCOM_SPI_CTRLA_CPOL_Pos); while (spi_dev->SYNCBUSY.reg); spi_dev->CTRLB.reg = (SERCOM_SPI_CTRLB_CHSIZE(0) | SERCOM_SPI_CTRLB_RXEN); while(spi_dev->SYNCBUSY.reg); spi_poweron(dev); return 0; } int spi_init_slave(spi_t dev, spi_conf_t conf, char (*cb)(char)) { /* TODO */ return 0; } void spi_transmission_begin(spi_t dev, char reset_val) { /* TODO*/ } int spi_acquire(spi_t dev) { if (dev >= SPI_NUMOF) { return -1; } mutex_lock(&locks[dev]); return 0; } int spi_release(spi_t dev) { if (dev >= SPI_NUMOF) { return -1; } mutex_unlock(&locks[dev]); return 0; } int spi_transfer_byte(spi_t dev, char out, char *in) { SercomSpi* spi_dev = 0; char tmp; switch(dev) { #ifdef SPI_0_EN case SPI_0: spi_dev = &(SPI_0_DEV); break; #endif #ifdef SPI_1_EN case SPI_1: spi_dev = &(SPI_1_DEV); break; #endif } while (!spi_dev->INTFLAG.bit.DRE); /* while data register is not empty*/ spi_dev->DATA.bit.DATA = out; while (!spi_dev->INTFLAG.bit.RXC); /* while receive is not complete*/ tmp = (char)spi_dev->DATA.bit.DATA; if (in != NULL) { in[0] = tmp; } return 1; } int spi_transfer_bytes(spi_t dev, char *out, char *in, unsigned int length) { int transfered = 0; if (out != NULL) { DEBUG("out*: %p out: %x length: %x\n", out, *out, length); while (length--) { int ret = spi_transfer_byte(dev, *(out)++, 0); if (ret < 0) { return ret; } transfered += ret; } } if (in != NULL) { while (length--) { int ret = spi_transfer_byte(dev, 0, in++); if (ret < 0) { return ret; } transfered += ret; } DEBUG("in*: %p in: %x transfered: %x\n", in, *(in-transfered), transfered); } DEBUG("sent %x byte(s)\n", transfered); return transfered; } int spi_transfer_reg(spi_t dev, uint8_t reg, char out, char *in) { spi_transfer_byte(dev, reg, NULL); return spi_transfer_byte(dev, out, in); } int spi_transfer_regs(spi_t dev, uint8_t reg, char *out, char *in, unsigned int length) { spi_transfer_byte(dev, reg, NULL); return spi_transfer_bytes(dev, out, in, length); } void spi_poweron(spi_t dev) { switch(dev) { #ifdef SPI_0_EN case SPI_0: SPI_0_DEV.CTRLA.reg |= SERCOM_SPI_CTRLA_ENABLE; while(SPI_0_DEV.SYNCBUSY.bit.ENABLE); break; #endif #ifdef SPI_1_EN case SPI_1: SPI_1_DEV.CTRLA.reg |= SERCOM_SPI_CTRLA_ENABLE; while(SPI_1_DEV.SYNCBUSY.bit.ENABLE); break; #endif } } void spi_poweroff(spi_t dev) { switch(dev) { #ifdef SPI_0_EN case SPI_0: SPI_0_DEV.CTRLA.bit.ENABLE = 0; /*Disable spi*/ while(SPI_0_DEV.SYNCBUSY.bit.ENABLE); break; #endif #ifdef SPI_1_EN case SPI_1: SPI_1_DEV.CTRLA.bit.ENABLE = 0; /*Disable spi*/ while(SPI_1_DEV.SYNCBUSY.bit.ENABLE); break; #endif } } #endif /* SPI_0_EN || SPI_1_EN */