// Copyright 2018-2019 Espressif Systems (Shanghai) PTE LTD // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include "spi_flash.h" #include "esp8266/spi_register.h" #include "esp8266/pin_mux_register.h" #include "priv/esp_spi_flash_raw.h" #include "esp_attr.h" #include "esp_wifi_osi.h" #include "esp_system.h" #include "esp_log.h" #include "esp_task_wdt.h" #include "esp_image_format.h" #define SPI_FLASH_ISSI_ENABLE_QIO_MODE (BIT(6)) /*gd25q32c*/ #define SPI_FLASH_GD25Q32C_WRITE_STATUSE1_CMD (0X01) #define SPI_FLASH_GD25Q32C_WRITE_STATUSE2_CMD (0X31) #define SPI_FLASH_GD25Q32C_WRITE_STATUSE3_CMD (0X11) #define SPI_FLASH_GD25Q32C_READ_STATUSE1_CMD (0X05) #define SPI_FLASH_GD25Q32C_READ_STATUSE2_CMD (0X35) #define SPI_FLASH_GD25Q32C_READ_STATUSE3_CMD (0X15) #define SPI_FLASH_GD25Q32C_QIO_MODE (BIT(1)) #define SPI_ISSI_FLASH_WRITE_PROTECT_STATUS (BIT(2)|BIT(3)|BIT(4)|BIT(5)) #define SPI_EON_25Q16A_WRITE_PROTECT_STATUS (BIT(2)|BIT(3)|BIT(4)|BIT(5)) #define SPI_EON_25Q16B_WRITE_PROTECT_STATUS (BIT(2)|BIT(3)|BIT(4)|BIT(5)) #define SPI_GD25Q32_FLASH_WRITE_PROTECT_STATUS (BIT(2)|BIT(3)|BIT(4)|BIT(5)|BIT(6)) #define SPI_FLASH_RDSR2 0x35 #define SPI_FLASH_PROTECT_STATUS (BIT(2)|BIT(3)|BIT(4)|BIT(5)|BIT(6)|BIT(14)) #ifndef BOOTLOADER_BUILD #define FLASH_INTR_DECLARE(t) #define FLASH_INTR_LOCK(t) vPortEnterCritical() #define FLASH_INTR_UNLOCK(t) vPortExitCritical() #else #define FLASH_INTR_DECLARE(t) #define FLASH_INTR_LOCK(t) #define FLASH_INTR_UNLOCK(t) #endif #define FLASH_ALIGN_BYTES 4 #define FLASH_ALIGN(addr) ((((size_t)addr) + (FLASH_ALIGN_BYTES - 1)) & (~(FLASH_ALIGN_BYTES - 1))) #define FLASH_ALIGN_BEFORE(addr) (FLASH_ALIGN(addr) - 4) #define NOT_ALIGN(addr) (((size_t)addr) & (FLASH_ALIGN_BYTES - 1)) #define IS_ALIGN(addr) (NOT_ALIGN(addr) == 0) extern void vPortEnterCritical(void); extern void vPortExitCritical(void); esp_spi_flash_chip_t flashchip = { 0x1640ef, CONFIG_SPI_FLASH_SIZE, 64 * 1024, 4 * 1024, 256, 0xffff }; uint8_t FlashIsOnGoing = 0; bool spi_user_cmd(spi_cmd_dir_t mode, spi_cmd_t *p_cmd) { bool ret; FLASH_INTR_DECLARE(c_tmp); if ((p_cmd->addr_len != 0 && p_cmd->addr == NULL) || (p_cmd->data_len != 0 && p_cmd->data == NULL) || (p_cmd == NULL)) { return false; } FLASH_INTR_LOCK(c_tmp); FlashIsOnGoing = 1; ret = spi_user_cmd_raw(&flashchip, mode, p_cmd); FlashIsOnGoing = 0; FLASH_INTR_UNLOCK(c_tmp); return ret; } bool special_flash_read_status(uint8_t command, uint32_t* status, int len) { bool ret; spi_cmd_t cmd; if( len > 2 || len < 1) { return false; } cmd.cmd = command; cmd.cmd_len = 1; cmd.addr = NULL; cmd.addr_len = 0; cmd.dummy_bits = 0; cmd.data = status; cmd.data_len = len; ret = spi_user_cmd(SPI_RX, &cmd); return ret; } bool special_flash_write_status(uint8_t command, uint32_t status, int len, bool write_en) { bool ret; spi_cmd_t cmd; if (len > 2 || len < 1) { return false; } cmd.cmd = command; cmd.cmd_len = 1; cmd.addr = NULL; cmd.addr_len = 0; cmd.dummy_bits = 0; cmd.data = &status; cmd.data_len = len > 1 ? 2 : 1; if (write_en) { ret = spi_user_cmd(SPI_WRSR, &cmd); } else { ret = spi_user_cmd(SPI_TX | SPI_RAW, &cmd); } return ret; } uint8_t en25q16x_read_sfdp(void) { spi_cmd_t cmd; uint32_t addr = 0x00003000; uint32_t data = 0; cmd.cmd = 0x5a; cmd.cmd_len = 1; cmd.addr = &addr; cmd.addr_len = 3; cmd.dummy_bits = 8; cmd.data = &data; cmd.data_len = 1; spi_user_cmd(SPI_RX, &cmd); return ((uint8_t) data); } uint32_t spi_flash_get_id(void) { uint32_t rdid = 0; FLASH_INTR_DECLARE(c_tmp); FLASH_INTR_LOCK(c_tmp); FlashIsOnGoing = 1; rdid = spi_flash_get_id_raw(&flashchip); FlashIsOnGoing = 0; FLASH_INTR_UNLOCK(c_tmp); return rdid; } esp_err_t spi_flash_read_status(uint32_t *status) { esp_err_t ret; FLASH_INTR_DECLARE(c_tmp); FLASH_INTR_LOCK(c_tmp); FlashIsOnGoing = 1; ret = spi_flash_read_status_raw(&flashchip, status); FlashIsOnGoing = 0; FLASH_INTR_UNLOCK(c_tmp); return ret; } esp_err_t spi_flash_write_status(uint32_t status_value) { FLASH_INTR_DECLARE(c_tmp); FLASH_INTR_LOCK(c_tmp); FlashIsOnGoing = 1; spi_flash_write_status_raw(&flashchip, status_value); FlashIsOnGoing = 0; FLASH_INTR_UNLOCK(c_tmp); return ESP_OK; } bool spi_flash_check_wr_protect(void) { uint32_t flash_id=spi_flash_get_id(); uint32_t status=0; //check for EN25Q16A/B flash chips if ((flash_id & 0xffffff) == 0x15701c) { uint8_t sfdp = en25q16x_read_sfdp(); if (sfdp == 0xE5) { //This is EN25Q16A, set bit6 in the same way as issi flash chips. if(spi_flash_read_status(&status)==0) { //Read status Ok if(status&(SPI_EON_25Q16A_WRITE_PROTECT_STATUS)) { //Write_protect special_flash_write_status(0x1, status&(~(SPI_EON_25Q16A_WRITE_PROTECT_STATUS)), 1, true); } } } else if (sfdp == 0xED) { //This is EN25Q16B if(spi_flash_read_status(&status)==0) { //Read status Ok if(status&(SPI_EON_25Q16B_WRITE_PROTECT_STATUS)) { //Write_protect special_flash_write_status(0x1, status&(~(SPI_EON_25Q16B_WRITE_PROTECT_STATUS)), 1, true); } } } } //MXIC :0XC2 //ISSI :0X9D // ets_printf("spi_flash_check_wr_protect\r\n"); else if(((flash_id&0xFF)==0X9D)||((flash_id&0xFF)==0XC2)||((flash_id & 0xFF) == 0x1C)) { if(spi_flash_read_status(&status)==0) { //Read status Ok if(status&(SPI_ISSI_FLASH_WRITE_PROTECT_STATUS)) { //Write_protect special_flash_write_status(0x1, status&(~(SPI_ISSI_FLASH_WRITE_PROTECT_STATUS)), 1, true); } } } //GD25Q32C:0X16409D //GD25Q128 else if(((flash_id&0xFFFFFFFF)==0X1640C8)||((flash_id&0xFFFFFFFF)==0X1840C8)) { if(spi_flash_read_status(&status)==0) { //Read status Ok if(status&SPI_GD25Q32_FLASH_WRITE_PROTECT_STATUS) { special_flash_write_status(0x01, status&(~(SPI_GD25Q32_FLASH_WRITE_PROTECT_STATUS)), 1, true); } } } //Others else { if(spi_flash_read_status(&status)==0) { //Read status Ok uint32_t status1 = 0; //flash_gd25q32c_read_status(GD25Q32C_STATUS2); special_flash_read_status(SPI_FLASH_RDSR2, &status1, 1); status=(status1 << 8)|(status & 0xff); if(status&SPI_FLASH_PROTECT_STATUS) { status=((status&(~SPI_FLASH_PROTECT_STATUS))&0xffff); spi_flash_write_status(status); } } } return true; } static void spi_flash_enable_qio_bit6(void) { uint8_t wrsr_cmd = 0x1; uint32_t issi_qio = SPI_FLASH_ISSI_ENABLE_QIO_MODE; special_flash_write_status(wrsr_cmd, issi_qio, 1, true); } static bool spi_flash_issi_enable_QIO_mode(void) { uint32_t status = 0; if(spi_flash_read_status(&status) == 0) { if((status&SPI_FLASH_ISSI_ENABLE_QIO_MODE)) { return true; } } else { return false; } spi_flash_enable_qio_bit6(); if(spi_flash_read_status(&status) == 0) { if((status&SPI_FLASH_ISSI_ENABLE_QIO_MODE)) { return true; } else { return false; } } else { return false; } } static uint8_t flash_gd25q32c_read_status(enum GD25Q32C_status status_index) { uint8_t rdsr_cmd=0; if(GD25Q32C_STATUS1 == status_index) { rdsr_cmd = SPI_FLASH_GD25Q32C_READ_STATUSE1_CMD; } else if(GD25Q32C_STATUS2 == status_index) { rdsr_cmd = SPI_FLASH_GD25Q32C_READ_STATUSE2_CMD; } else if(GD25Q32C_STATUS3 == status_index) { rdsr_cmd = SPI_FLASH_GD25Q32C_READ_STATUSE3_CMD; } else { } uint32_t status; special_flash_read_status(rdsr_cmd, &status, 1); return ((uint8_t)status); } static void flash_gd25q32c_write_status(enum GD25Q32C_status status_index,uint8_t status) { uint32_t wrsr_cmd=0; uint32_t new_status = status; if(GD25Q32C_STATUS1 == status_index) { wrsr_cmd = SPI_FLASH_GD25Q32C_WRITE_STATUSE1_CMD; } else if(GD25Q32C_STATUS2 == status_index) { wrsr_cmd = SPI_FLASH_GD25Q32C_WRITE_STATUSE2_CMD; } else if(GD25Q32C_STATUS3 == status_index) { wrsr_cmd = SPI_FLASH_GD25Q32C_WRITE_STATUSE3_CMD; } else { //ets_printf("[ERR]Not konw GD25Q32C status idx %d\n ",spi_wr_status_cmd); } special_flash_write_status(wrsr_cmd, new_status, 1, true); } static bool flash_gd25q32c_enable_QIO_mode(void) { uint8_t data = 0; if((data=flash_gd25q32c_read_status(GD25Q32C_STATUS2))&SPI_FLASH_GD25Q32C_QIO_MODE) { return true; } else { flash_gd25q32c_write_status(GD25Q32C_STATUS2,SPI_FLASH_GD25Q32C_QIO_MODE); if(flash_gd25q32c_read_status(GD25Q32C_STATUS2)&SPI_FLASH_GD25Q32C_QIO_MODE) { return true; } else { return false; } } } void special_flash_set_mode(uint8_t command, bool disable_wait_idle) { spi_cmd_t cmd; cmd.cmd = command; cmd.cmd_len = 1; cmd.addr = NULL; cmd.addr_len = 0; cmd.dummy_bits = 0; cmd.data = NULL; cmd.data_len = 0; if (disable_wait_idle) { spi_user_cmd(SPI_TX | SPI_RAW, &cmd); } else { spi_user_cmd(SPI_TX, &cmd); } } bool en25q16x_write_volatile_status(uint8_t vsr) { //enter OTP mode special_flash_set_mode(0x3a, true); //volatile status register write enable special_flash_set_mode(0x50, true); //send 0x01 + 0x40 to set WHDIS bit special_flash_write_status(0x01, vsr, 1, false); //check uint32_t status = 0; special_flash_read_status(0x05, &status, 1); //Leave OTP mode special_flash_set_mode(0x04, false); if (status == 0x40) { return true; } else { return false; } } void user_spi_flash_dio_to_qio_pre_init(void) { uint32_t flash_id = spi_flash_get_id(); bool to_qio = false; //check for EN25Q16A/B flash chips if ((flash_id & 0xffffff) == 0x15701c) { uint8_t sfdp = en25q16x_read_sfdp(); if (sfdp == 0xE5) { //This is EN25Q16A, set bit6 in the same way as issi flash chips. if (spi_flash_issi_enable_QIO_mode() == true) { to_qio = true; } } else if (sfdp == 0xED) { //This is EN25Q16B if (en25q16x_write_volatile_status(0x40) == true) { to_qio = true; } } } // ISSI : 0x9D // MXIC : 0xC2 // GD25Q32C & GD25Q128C : 0x1640C8 // EON : 0X1C // ENABLE FLASH QIO 0X01H+BIT6 else if (((flash_id & 0xFF) == 0x9D) || ((flash_id & 0xFF) == 0xC2) || ((flash_id & 0xFF) == 0x1C) ) { if (spi_flash_issi_enable_QIO_mode() == true) { to_qio = true; } //ENABLE FLASH QIO 0X31H+BIT2 } else if (((flash_id & 0xFFFFFF) == 0x1640C8) || ((flash_id & 0xFFFFFF) == 0x1840C8)) { if (flash_gd25q32c_enable_QIO_mode() == true) { to_qio = true; } //ENBALE FLASH QIO 0X01H+0X00+0X02 } else { if (spi_flash_enable_qmode_raw(&flashchip) == ESP_OK) { to_qio = true; } } if (to_qio == true) { spi_flash_switch_to_qio_raw(); } } esp_err_t spi_flash_erase_sector(size_t sec) { FLASH_INTR_DECLARE(c_tmp); esp_err_t ret; if (sec >= (flashchip.chip_size / flashchip.sector_size)) { return ESP_ERR_FLASH_OP_FAIL; } if (spi_flash_check_wr_protect() == false) { return ESP_ERR_FLASH_OP_FAIL; } FLASH_INTR_LOCK(c_tmp); FlashIsOnGoing = 1; ret = spi_flash_erase_sector_raw(&flashchip, sec, flashchip.sector_size); FlashIsOnGoing = 0; FLASH_INTR_UNLOCK(c_tmp); return ret; } static esp_err_t spi_flash_program(uint32_t target, uint32_t *src_addr, size_t len) { uint32_t page_size; uint32_t pgm_len, pgm_num; uint8_t i; page_size = flashchip.page_size; pgm_len = page_size - (target % page_size); if (len < pgm_len) { if (ESP_OK != spi_flash_write_raw(&flashchip, target, src_addr, len)) { return ESP_ERR_FLASH_OP_FAIL; } } else { if (ESP_OK != spi_flash_write_raw(&flashchip, target, src_addr, pgm_len)) { return ESP_ERR_FLASH_OP_FAIL; } //whole page program pgm_num = (len - pgm_len) / page_size; for (i = 0; i < pgm_num; i++) { if (ESP_OK != spi_flash_write_raw(&flashchip, target + pgm_len, src_addr + (pgm_len >> 2), page_size)) { return ESP_ERR_FLASH_OP_FAIL; } pgm_len += page_size; } //remain parts to program if (ESP_OK != spi_flash_write_raw(&flashchip, target + pgm_len, src_addr + (pgm_len >> 2), len - pgm_len)) { return ESP_ERR_FLASH_OP_FAIL; } } return ESP_OK; } static esp_err_t __spi_flash_write(size_t dest_addr, const void *src, size_t size) { esp_err_t ret; FLASH_INTR_DECLARE(c_tmp); FLASH_INTR_LOCK(c_tmp); FlashIsOnGoing = 1; ret = spi_flash_program(dest_addr, (uint32_t *)src, size); FlashIsOnGoing = 0; FLASH_INTR_UNLOCK(c_tmp); return ret; } esp_err_t spi_flash_write(size_t dest_addr, const void *src, size_t size) { #undef FLASH_WRITE #define FLASH_WRITE(dest, src, size) \ { \ ret = __spi_flash_write(dest, src, size); \ esp_task_wdt_reset(); \ if (ret) { \ return ret; \ } \ } #undef FLASH_READ #define FLASH_READ(dest, src, size) \ { \ ret = spi_flash_read(dest, src, size); \ if (ret) { \ return ret; \ } \ } esp_err_t ret = ESP_ERR_FLASH_OP_FAIL; uint8_t *tmp = (uint8_t *)src; if (!size) return ESP_OK; if (src == NULL) { return ESP_ERR_FLASH_OP_FAIL; } if ((dest_addr + size) > flashchip.chip_size) { return ESP_ERR_FLASH_OP_FAIL; } if (spi_flash_check_wr_protect() == false) { return ESP_ERR_FLASH_OP_FAIL; } if (NOT_ALIGN(dest_addr) || NOT_ALIGN(tmp) || NOT_ALIGN(size) || IS_FLASH(src)) { uint8_t buf[SPI_READ_BUF_MAX]; if (NOT_ALIGN(dest_addr)) { size_t r_addr = FLASH_ALIGN_BEFORE(dest_addr); size_t c_off = dest_addr - r_addr; size_t wbytes = FLASH_ALIGN_BYTES - c_off; wbytes = wbytes > size ? size : wbytes; FLASH_READ(r_addr, buf, FLASH_ALIGN_BYTES); memcpy(&buf[c_off], tmp, wbytes); FLASH_WRITE(r_addr, buf, FLASH_ALIGN_BYTES); dest_addr += wbytes; tmp += wbytes; size -= wbytes; } while (size > 0) { size_t len = size >= SPI_READ_BUF_MAX ? SPI_READ_BUF_MAX : size; size_t wlen = FLASH_ALIGN(len); if (wlen != len) { size_t l_b = wlen - FLASH_ALIGN_BYTES; FLASH_READ(dest_addr + l_b, &buf[l_b], FLASH_ALIGN_BYTES); } memcpy(buf, tmp, len); FLASH_WRITE(dest_addr, buf, wlen); dest_addr += len; tmp += len; size -= len; } } else { FLASH_WRITE(dest_addr, src, size); } return ret; } static esp_err_t __spi_flash_read(size_t src_addr, void *dest, size_t size) { esp_err_t ret; FLASH_INTR_DECLARE(c_tmp); FLASH_INTR_LOCK(c_tmp); FlashIsOnGoing = 1; ret = spi_flash_read_raw(&flashchip, src_addr, dest, size); FlashIsOnGoing = 0; FLASH_INTR_UNLOCK(c_tmp); return ret == 0 ? ESP_OK : ESP_ERR_FLASH_OP_FAIL; } esp_err_t spi_flash_read(size_t src_addr, void *dest, size_t size) { #undef FLASH_READ #define FLASH_READ(addr, dest, size) \ { \ ret = __spi_flash_read(addr, dest, size); \ esp_task_wdt_reset(); \ if (ret) \ return ret; \ } esp_err_t ret; uint8_t *tmp = (uint8_t *)dest; if (!size) return ESP_OK; if (tmp == NULL) { return ESP_ERR_FLASH_OP_FAIL; } if (NOT_ALIGN(src_addr) || NOT_ALIGN(tmp) || NOT_ALIGN(size)) { uint8_t buf[SPI_READ_BUF_MAX]; if (NOT_ALIGN(src_addr)) { size_t r_addr = FLASH_ALIGN_BEFORE(src_addr); size_t c_off = src_addr - r_addr; size_t wbytes = FLASH_ALIGN_BYTES - c_off; wbytes = wbytes > size ? size : wbytes; FLASH_READ(r_addr, buf, FLASH_ALIGN_BYTES); memcpy(tmp, &buf[c_off], wbytes); tmp += wbytes; src_addr += wbytes; size -= wbytes; } while (size) { size_t len = size >= SPI_READ_BUF_MAX ? SPI_READ_BUF_MAX : size; size_t wlen = FLASH_ALIGN(len); FLASH_READ(src_addr, buf, wlen); memcpy(tmp, buf, len); src_addr += len; tmp += len; size -= len; } } else { FLASH_READ(src_addr, tmp, size); } return ESP_OK; } /** * @brief Erase a range of flash sectors */ esp_err_t spi_flash_erase_range(size_t start_address, size_t size) { esp_err_t ret; size_t sec, num; if (start_address % SPI_FLASH_SEC_SIZE || size % SPI_FLASH_SEC_SIZE) { return ESP_ERR_FLASH_OP_FAIL; } if (spi_flash_check_wr_protect() == false) { return ESP_ERR_FLASH_OP_FAIL; } sec = start_address / SPI_FLASH_SEC_SIZE; num = size / SPI_FLASH_SEC_SIZE; /* * call "spi_flash_erase_sector" continuely to make the function to be able * to enter/exit critical state so that system core can feed watch */ do { ret = spi_flash_erase_sector(sec++); esp_task_wdt_reset(); } while (ret == ESP_OK && --num); return ret; } void esp_spi_flash_init(uint32_t spi_speed, uint32_t spi_mode) { uint32_t freqdiv, freqbits; SET_PERI_REG_MASK(PERIPHS_SPI_FLASH_USRREG, BIT5); if (spi_speed < 3) freqdiv = spi_speed + 2; else if (0x0F == spi_speed) freqdiv = 1; else freqdiv = 2; if (1 >= freqdiv) { freqbits = SPI_FLASH_CLK_EQU_SYSCLK; SET_PERI_REG_MASK(PERIPHS_SPI_FLASH_CTRL, SPI_FLASH_CLK_EQU_SYSCLK); SET_PERI_REG_MASK(PERIPHS_IO_MUX_CONF_U, SPI0_CLK_EQU_SYSCLK); } else { freqbits = ((freqdiv - 1) << 8) + ((freqdiv / 2 - 1) << 4) + (freqdiv - 1); CLEAR_PERI_REG_MASK(PERIPHS_SPI_FLASH_CTRL, SPI_FLASH_CLK_EQU_SYSCLK); CLEAR_PERI_REG_MASK(PERIPHS_IO_MUX_CONF_U, SPI0_CLK_EQU_SYSCLK); } SET_PERI_REG_BITS(PERIPHS_SPI_FLASH_CTRL, 0xfff, freqbits, 0); if (spi_mode == ESP_IMAGE_SPI_MODE_QIO || spi_mode == ESP_IMAGE_SPI_MODE_QOUT) { user_spi_flash_dio_to_qio_pre_init(); ESP_EARLY_LOGI("qio_mode", "Enabling default flash chip QIO"); } } uintptr_t spi_flash_cache2phys(const void *cached) { uint32_t map_size; uintptr_t addr_offset; uintptr_t addr = (uintptr_t)cached; const uint32_t reg = REG_READ(CACHE_FLASH_CTRL_REG); const uint32_t segment = (reg >> CACHE_MAP_SEGMENT_S) & CACHE_MAP_SEGMENT_MASK; if (reg & CACHE_MAP_2M) { map_size = CACHE_2M_SIZE; addr_offset = 0; } else { map_size = CACHE_1M_SIZE; if (reg & CACHE_MAP_1M_HIGH) addr_offset = CACHE_1M_SIZE; else addr_offset = 0; } if (addr <= CACHE_BASE_ADDR || addr >= CACHE_BASE_ADDR + map_size) return SPI_FLASH_CACHE2PHYS_FAIL; return segment * CACHE_2M_SIZE + (addr + addr_offset - CACHE_BASE_ADDR); }