/* * Copyright (C) 2019 Koen Zandberg * * This file is subject to the terms and conditions of the GNU Lesser * General Public License v2.1. See the file LICENSE in the top level * directory for more details. */ /** * @ingroup cpu_stm32_usbdev * @{ * @file * @brief Low level USB interface functions for the stm32 FS/HS devices * * @author Koen Zandberg * @} */ #define USB_H_USER_IS_RIOT_INTERNAL #include #include #include #include #include "bitarithm.h" #include "ztimer.h" #include "cpu.h" #include "cpu_conf.h" #include "periph/pm.h" #include "periph/gpio.h" #include "periph/usbdev.h" #include "pm_layered.h" #include "usbdev_stm32.h" /** * Be careful with enabling debug here. As with all timing critical systems it * is able to interfere with USB functionality and you might see different * errors than debug disabled */ #define ENABLE_DEBUG 0 #include "debug.h" #if defined(STM32_USB_OTG_FS_ENABLED) && defined(STM32_USB_OTG_HS_ENABLED) #define _TOTAL_NUM_ENDPOINTS (STM32_USB_OTG_FS_NUM_EP + \ STM32_USB_OTG_HS_NUM_EP) #elif defined(STM32_USB_OTG_FS_ENABLED) #define _TOTAL_NUM_ENDPOINTS (STM32_USB_OTG_FS_NUM_EP) #elif defined(STM32_USB_OTG_HS_ENABLED) #define _TOTAL_NUM_ENDPOINTS (STM32_USB_OTG_HS_NUM_EP) #endif /* Mask for the set of interrupts used */ #define STM32_FSHS_USB_GINT_MASK \ (USB_OTG_GINTMSK_USBSUSPM | \ USB_OTG_GINTMSK_WUIM | \ USB_OTG_GINTMSK_ENUMDNEM | \ USB_OTG_GINTMSK_USBRST | \ USB_OTG_GINTMSK_OTGINT | \ USB_OTG_GINTMSK_IEPINT | \ USB_OTG_GINTMSK_OEPINT | \ USB_OTG_GINTMSK_RXFLVLM) #define STM32_PKTSTS_GONAK 0x01 /**< Rx fifo global out nak */ #define STM32_PKTSTS_DATA_UPDT 0x02 /**< Rx fifo data update */ #define STM32_PKTSTS_XFER_COMP 0x03 /**< Rx fifo data complete */ #define STM32_PKTSTS_SETUP_COMP 0x04 /**< Rx fifo setup complete */ #define STM32_PKTSTS_SETUP_UPDT 0x06 /**< Rx fifo setup update */ /* Some device families (F7 and L4) forgot to define the FS device FIFO size * * in their vendor headers. This define sets it to the value from the * * reference manual */ #ifndef USB_OTG_FS_TOTAL_FIFO_SIZE #define USB_OTG_FS_TOTAL_FIFO_SIZE (1280U) #endif /* Some device families (F7 and L4) forgot to define the HS device FIFO size * * in their vendor headers. This define sets it to the value from the * * reference manual */ #ifndef USB_OTG_HS_TOTAL_FIFO_SIZE #define USB_OTG_HS_TOTAL_FIFO_SIZE (4096U) #endif /* minimum depth of an individual transmit FIFO */ #define STM32_USB_OTG_FIFO_MIN_WORD_SIZE (16U) /* Offset for OUT endpoints in a shared IN/OUT endpoint bit flag register */ #define STM32_USB_OTG_REG_EP_OUT_OFFSET (16U) /* Endpoint zero size values */ #define STM32_USB_OTG_EP0_SIZE_64 (0x0) #define STM32_USB_OTG_EP0_SIZE_32 (0x1) #define STM32_USB_OTG_EP0_SIZE_16 (0x2) #define STM32_USB_OTG_EP0_SIZE_8 (0x3) /* Endpoint type values */ #define STM32_USB_OTG_EP_TYPE_CONTROL (0x00 << USB_OTG_DOEPCTL_EPTYP_Pos) #define STM32_USB_OTG_EP_TYPE_ISO (0x01 << USB_OTG_DOEPCTL_EPTYP_Pos) #define STM32_USB_OTG_EP_TYPE_BULK (0x02 << USB_OTG_DOEPCTL_EPTYP_Pos) #define STM32_USB_OTG_EP_TYPE_INTERRUPT (0x03 << USB_OTG_DOEPCTL_EPTYP_Pos) /* List of instantiated USB peripherals */ static stm32_usb_otg_fshs_t _usbdevs[USBDEV_NUMOF] = { 0 }; static usbdev_ep_t _out[_TOTAL_NUM_ENDPOINTS]; static usbdev_ep_t _in[_TOTAL_NUM_ENDPOINTS]; /* Forward declaration for the usb device driver */ const usbdev_driver_t driver; static void _flush_tx_fifo(const stm32_usb_otg_fshs_config_t *conf, uint8_t fifo_num); /************************************************************************* * Conversion function from the base address to specific register blocks * *************************************************************************/ static USB_OTG_GlobalTypeDef *_global_regs( const stm32_usb_otg_fshs_config_t *conf) { return (USB_OTG_GlobalTypeDef *)(conf->periph + USB_OTG_GLOBAL_BASE); } static USB_OTG_DeviceTypeDef *_device_regs( const stm32_usb_otg_fshs_config_t *conf) { return (USB_OTG_DeviceTypeDef *)(conf->periph + USB_OTG_DEVICE_BASE); } static USB_OTG_INEndpointTypeDef *_in_regs( const stm32_usb_otg_fshs_config_t *conf, size_t endpoint) { return (USB_OTG_INEndpointTypeDef *)(conf->periph + USB_OTG_IN_ENDPOINT_BASE + USB_OTG_EP_REG_SIZE * endpoint); } static USB_OTG_OUTEndpointTypeDef *_out_regs( const stm32_usb_otg_fshs_config_t *conf, size_t endpoint) { return (USB_OTG_OUTEndpointTypeDef *)(conf->periph + USB_OTG_OUT_ENDPOINT_BASE + USB_OTG_EP_REG_SIZE * endpoint); } static __I uint32_t *_rx_fifo(const stm32_usb_otg_fshs_config_t *conf) { return (__I uint32_t *)(conf->periph + USB_OTG_FIFO_BASE); } static __O uint32_t *_tx_fifo(const stm32_usb_otg_fshs_config_t *conf, size_t num) { return (__O uint32_t *)(conf->periph + USB_OTG_FIFO_BASE + USB_OTG_FIFO_SIZE * num); } static __IO uint32_t *_pcgcctl_reg(const stm32_usb_otg_fshs_config_t *conf) { return (__IO uint32_t *)(conf->periph + USB_OTG_PCGCCTL_BASE); } /* end of conversion functions */ /** * @brief Determine the number of available endpoints for the peripheral based * on the type and the CID version * * @param config configuration struct */ static size_t _max_endpoints(const stm32_usb_otg_fshs_config_t *config) { return (config->type == STM32_USB_OTG_FS) ? STM32_USB_OTG_FS_NUM_EP : STM32_USB_OTG_HS_NUM_EP; } static bool _uses_dma(const stm32_usb_otg_fshs_config_t *config) { #if defined(STM32_USB_OTG_HS_ENABLED) && STM32_USB_OTG_HS_USE_DMA return config->type == STM32_USB_OTG_HS; #else (void)config; return false; #endif } static size_t _setup(stm32_usb_otg_fshs_t *usbdev, const stm32_usb_otg_fshs_config_t *config, size_t idx) { usbdev->usbdev.driver = &driver; usbdev->config = config; usbdev->out = &_out[idx]; usbdev->in = &_in[idx]; return _max_endpoints(config); } /** * @brief Low level usbdev struct setup * * Distributes the available endpoints among the enabled peripherals */ void usbdev_init_lowlevel(void) { size_t ep_idx = 0; for (size_t i = 0; i < USBDEV_NUMOF; i++) { ep_idx += _setup(&_usbdevs[i], &stm32_usb_otg_fshs_config[i], ep_idx); } #ifdef NDEBUG (void)ep_idx; #endif assert(ep_idx == _TOTAL_NUM_ENDPOINTS); } usbdev_t *usbdev_get_ctx(unsigned num) { assert(num < USBDEV_NUMOF); return &_usbdevs[num].usbdev; } static void _enable_global_out_nak(const stm32_usb_otg_fshs_config_t *conf) { if (_device_regs(conf)->DCTL & USB_OTG_DCTL_GONSTS) { return; } _device_regs(conf)->DCTL |= USB_OTG_DCTL_SGONAK; while (!(_device_regs(conf)->DCTL & USB_OTG_DCTL_GONSTS)) {} } static void _disable_global_out_nak(const stm32_usb_otg_fshs_config_t *conf) { if (!(_device_regs(conf)->DCTL & USB_OTG_DCTL_GONSTS)) { return; } _device_regs(conf)->DCTL |= USB_OTG_DCTL_CGONAK; while ((_device_regs(conf)->DCTL & USB_OTG_DCTL_GONSTS)) {} } static void _enable_global_in_nak(const stm32_usb_otg_fshs_config_t *conf) { if (_device_regs(conf)->DCTL & USB_OTG_DCTL_GINSTS) { return; } _device_regs(conf)->DCTL |= USB_OTG_DCTL_SGINAK; while (!(_device_regs(conf)->DCTL & USB_OTG_DCTL_GINSTS)) {} } static void _disable_global_in_nak(const stm32_usb_otg_fshs_config_t *conf) { if (!(_device_regs(conf)->DCTL & USB_OTG_DCTL_GINSTS)) { return; } _device_regs(conf)->DCTL |= USB_OTG_DCTL_CGINAK; while ((_device_regs(conf)->DCTL & USB_OTG_DCTL_GINSTS)) {} } static void _disable_global_nak(const stm32_usb_otg_fshs_config_t *conf) { _disable_global_in_nak(conf); _disable_global_out_nak(conf); } static uint32_t _type_to_reg(usb_ep_type_t type) { switch (type) { case USB_EP_TYPE_CONTROL: return STM32_USB_OTG_EP_TYPE_CONTROL; case USB_EP_TYPE_ISOCHRONOUS: return STM32_USB_OTG_EP_TYPE_ISO; case USB_EP_TYPE_BULK: return STM32_USB_OTG_EP_TYPE_BULK; case USB_EP_TYPE_INTERRUPT: return STM32_USB_OTG_EP_TYPE_INTERRUPT; default: assert(false); return 0; } } static uint32_t _ep0_size(size_t size) { switch (size) { case 64: return STM32_USB_OTG_EP0_SIZE_64; case 32: return STM32_USB_OTG_EP0_SIZE_32; case 16: return STM32_USB_OTG_EP0_SIZE_16; case 8: return STM32_USB_OTG_EP0_SIZE_8; default: assert(false); return 0x00; } } /** * @brief Disables an IN type endpoint * * Endpoint is only deactivated if it was activated */ static void _ep_in_disable(const stm32_usb_otg_fshs_config_t *conf, size_t num) { if (_in_regs(conf, num)->DIEPCTL & USB_OTG_DIEPCTL_EPENA) { DEBUG("otg_fs: Disabling IN %u\n", num); /* Enable global nak according to procedure */ _enable_global_in_nak(conf); /* Flush the fifo to clear pending data */ _flush_tx_fifo(conf, num); /* disable endpoint and set NAK */ _in_regs(conf, num)->DIEPCTL = USB_OTG_DIEPCTL_EPDIS | USB_OTG_DIEPCTL_SNAK; /* Wait for the disable to take effect */ while (_in_regs(conf, num)->DIEPCTL & USB_OTG_DIEPCTL_EPDIS) {} /* Disable global nak according to procedure */ _disable_global_in_nak(conf); } } /** * @brief Disables an OUT type endpoint * * Endpoint is only deactivated if it was activated */ static void _ep_out_disable(const stm32_usb_otg_fshs_config_t *conf, size_t num) { if (_out_regs(conf, num)->DOEPCTL & USB_OTG_DOEPCTL_EPENA) { DEBUG("otg_fs: Disabling OUT %u\n", num); /* Enable global nak according to procedure */ _enable_global_out_nak(conf); /* No need to flush the fifo here, this works(tm) */ /* disable endpoint and set NAK */ _out_regs(conf, num)->DOEPCTL = USB_OTG_DOEPCTL_EPDIS | USB_OTG_DOEPCTL_SNAK; /* Wait for the disable to take effect */ while (_out_regs(conf, num)->DOEPCTL & USB_OTG_DOEPCTL_EPDIS) {} /* Disable global nak according to procedure */ _disable_global_out_nak(conf); } } static void _ep_deactivate(usbdev_ep_t *ep) { stm32_usb_otg_fshs_t *usbdev = (stm32_usb_otg_fshs_t *)ep->dev; const stm32_usb_otg_fshs_config_t *conf = usbdev->config; if (ep->dir == USB_EP_DIR_IN) { _ep_in_disable(conf, ep->num); _in_regs(conf, ep->num)->DIEPCTL &= USB_OTG_DIEPCTL_USBAEP; } else { _ep_out_disable(conf, ep->num); _out_regs(conf, ep->num)->DOEPCTL &= USB_OTG_DOEPCTL_USBAEP; } } static void _ep_activate(usbdev_ep_t *ep) { stm32_usb_otg_fshs_t *usbdev = (stm32_usb_otg_fshs_t *)ep->dev; const stm32_usb_otg_fshs_config_t *conf = usbdev->config; if (ep->dir == USB_EP_DIR_IN) { _ep_in_disable(conf, ep->num); _device_regs(conf)->DAINTMSK |= 1 << ep->num; uint32_t diepctl = USB_OTG_DIEPCTL_SNAK | USB_OTG_DIEPCTL_USBAEP | _type_to_reg(ep->type) | ep->num << USB_OTG_DIEPCTL_TXFNUM_Pos; if (ep->num == 0) { diepctl |= _ep0_size(ep->len); } else { diepctl |= ep->len; diepctl |= USB_OTG_DIEPCTL_SD0PID_SEVNFRM; } _in_regs(conf, ep->num)->DIEPCTL |= diepctl; } else { _ep_out_disable(conf, ep->num); _device_regs(conf)->DAINTMSK |= 1 << (ep->num + STM32_USB_OTG_REG_EP_OUT_OFFSET); _out_regs(conf, ep->num)->DOEPCTL |= USB_OTG_DOEPCTL_SNAK | USB_OTG_DOEPCTL_USBAEP; _type_to_reg(ep->type); if (ep->num == 0) { _out_regs(conf, ep->num)->DOEPCTL |= _ep0_size(ep->len); } else { _out_regs(conf, ep->num)->DOEPCTL |= ep->len; _out_regs(conf, ep->num)->DOEPCTL |= USB_OTG_DOEPCTL_SD0PID_SEVNFRM; } } } static inline void _usb_attach(stm32_usb_otg_fshs_t *usbdev) { DEBUG("otg_fs: Attaching to host\n"); /* Disable the soft disconnect feature */ _device_regs(usbdev->config)->DCTL &= ~USB_OTG_DCTL_SDIS; } static inline void _usb_detach(stm32_usb_otg_fshs_t *usbdev) { DEBUG("otg_fs: Detaching from host\n"); /* Enable the soft disconnect feature */ _device_regs(usbdev->config)->DCTL |= USB_OTG_DCTL_SDIS; } static void _set_address(stm32_usb_otg_fshs_t *usbdev, uint8_t address) { _device_regs(usbdev->config)->DCFG = (_device_regs(usbdev->config)->DCFG & ~(USB_OTG_DCFG_DAD_Msk)) | (address << USB_OTG_DCFG_DAD_Pos); } static usbdev_ep_t *_get_ep(stm32_usb_otg_fshs_t *usbdev, unsigned num, usb_ep_dir_t dir) { if (num >= STM32_USB_OTG_FS_NUM_EP) { return NULL; } return dir == USB_EP_DIR_IN ? &usbdev->in[num] : &usbdev->out[num]; } #if defined(DEVELHELP) && !defined(NDEBUG) static size_t _total_fifo_size(const stm32_usb_otg_fshs_config_t *conf) { if (conf->type == STM32_USB_OTG_FS) { #ifdef STM32_USB_OTG_FS_ENABLED return USB_OTG_FS_TOTAL_FIFO_SIZE; #else return 0; #endif /* STM32_USB_OTG_FS_ENABLED */ } else { #ifdef STM32_USB_OTG_HS_ENABLED return USB_OTG_HS_TOTAL_FIFO_SIZE; #else return 0; #endif /* STM32_USB_OTG_HS_ENABLED */ } } #endif /* defined(DEVELHELP) && !defined(NDEBUG) */ static void _configure_tx_fifo(stm32_usb_otg_fshs_t *usbdev, size_t num, size_t len) { /* TX Fifo size must be at least 16 words long and must be word aligned */ size_t wordlen = len < (STM32_USB_OTG_FIFO_MIN_WORD_SIZE * sizeof(uint32_t)) ? STM32_USB_OTG_FIFO_MIN_WORD_SIZE : (len + (sizeof(uint32_t) - 1)) / sizeof(uint32_t); /* Check max size */ assert(usbdev->fifo_pos + wordlen <= _total_fifo_size(usbdev->config) / sizeof(uint32_t)); /* FIFO Array starts at FIFO 1 at index 0, FIFO 0 is special and has a * different register (DIEPTXF0_HNPTXFSIZ) */ _global_regs(usbdev->config)->DIEPTXF[num - 1] = (wordlen << USB_OTG_TX0FD_Pos) | (usbdev->fifo_pos); usbdev->fifo_pos += wordlen; } static void _configure_fifo(stm32_usb_otg_fshs_t *usbdev) { /* TODO: cleanup, more dynamic, etc */ const stm32_usb_otg_fshs_config_t *conf = usbdev->config; size_t rx_size = conf->type == STM32_USB_OTG_FS ? STM32_USB_OTG_FS_RX_FIFO_SIZE : STM32_USB_OTG_HS_RX_FIFO_SIZE; _global_regs(conf)->GRXFSIZ = (_global_regs(conf)->GRXFSIZ & ~USB_OTG_GRXFSIZ_RXFD) | rx_size; _global_regs(conf)->DIEPTXF0_HNPTXFSIZ = (STM32_USB_OTG_FIFO_MIN_WORD_SIZE << USB_OTG_TX0FD_Pos) | rx_size; usbdev->fifo_pos = (rx_size + STM32_USB_OTG_FIFO_MIN_WORD_SIZE); } static usbdev_ep_t *_usbdev_new_ep(usbdev_t *dev, usb_ep_type_t type, usb_ep_dir_t dir, size_t buf_len) { stm32_usb_otg_fshs_t *usbdev = (stm32_usb_otg_fshs_t *)dev; usbdev_ep_t *ep = NULL; if (type == USB_EP_TYPE_CONTROL) { if (dir == USB_EP_DIR_IN) { ep = &usbdev->in[0]; } else { ep = &usbdev->out[0]; } ep->num = 0; } else { /* Find the first unassigned ep with matching direction */ for (unsigned idx = 1; idx < STM32_USB_OTG_FS_NUM_EP && !ep; idx++) { usbdev_ep_t *candidate_ep = _get_ep(usbdev, idx, dir); if (candidate_ep->type == USB_EP_TYPE_NONE) { ep = candidate_ep; ep->num = idx; } } } if (ep && ep->type == USB_EP_TYPE_NONE) { if (usbdev->occupied + buf_len < STM32_USB_OTG_BUF_SPACE) { ep->buf = usbdev->buffer + usbdev->occupied; ep->dir = dir; ep->type = type; ep->dev = dev; ep->len = buf_len; usbdev->occupied += buf_len; if (ep->dir == USB_EP_DIR_IN && ep->num != 0) { _configure_tx_fifo(usbdev, ep->num, ep->len); } } } return ep; } /** * @brief reset a TX fifo. * * @param conf usbdev context * @param fifo_num fifo number to reset, 0x10 for all fifos */ static void _flush_tx_fifo(const stm32_usb_otg_fshs_config_t *conf, uint8_t fifo_num) { uint32_t reg = _global_regs(conf)->GRSTCTL & ~(USB_OTG_GRSTCTL_TXFNUM); reg |= fifo_num << USB_OTG_GRSTCTL_TXFNUM_Pos | USB_OTG_GRSTCTL_TXFFLSH; _global_regs(conf)->GRSTCTL = reg; /* Wait for flush to finish */ while (_global_regs(conf)->GRSTCTL & USB_OTG_GRSTCTL_TXFFLSH) {} } static void _flush_rx_fifo(const stm32_usb_otg_fshs_config_t *conf) { _global_regs(conf)->GRSTCTL |= USB_OTG_GRSTCTL_RXFFLSH; while (_global_regs(conf)->GRSTCTL & USB_OTG_GRSTCTL_RXFFLSH) {} } static void _sleep_periph(const stm32_usb_otg_fshs_config_t *conf) { *_pcgcctl_reg(conf) |= USB_OTG_PCGCCTL_STOPCLK; /* Unblocking STM32_PM_STOP during suspend on the stm32f446 breaks * while (un)blocking works on the stm32f401, needs more * investigation with a larger set of chips */ #ifdef STM32_USB_OTG_CID_1x pm_unblock(STM32_PM_STOP); #endif } static void _wake_periph(const stm32_usb_otg_fshs_config_t *conf) { #ifdef STM32_USB_OTG_CID_1x pm_block(STM32_PM_STOP); #endif *_pcgcctl_reg(conf) &= ~USB_OTG_PCGCCTL_STOPCLK; _flush_rx_fifo(conf); _flush_tx_fifo(conf, 0x10); } static void _reset_eps(stm32_usb_otg_fshs_t *usbdev) { const stm32_usb_otg_fshs_config_t *conf = usbdev->config; /* Set the NAK for all endpoints */ for (size_t i = 0; i < _max_endpoints(conf); i++) { _out_regs(conf, i)->DOEPCTL |= USB_OTG_DOEPCTL_SNAK; _in_regs(conf, i)->DIEPCTL |= USB_OTG_DIEPCTL_SNAK; _in_regs(conf, i)->DIEPCTL |= (i) << USB_OTG_DIEPCTL_TXFNUM_Pos; } } static void _reset_periph(stm32_usb_otg_fshs_t *usbdev) { const stm32_usb_otg_fshs_config_t *conf = usbdev->config; /* Wait for AHB idle */ while (!(_global_regs(conf)->GRSTCTL & USB_OTG_GRSTCTL_AHBIDL)) {} _global_regs(conf)->GRSTCTL |= USB_OTG_GRSTCTL_CSRST; /* Wait for reset done */ while (_global_regs(conf)->GRSTCTL & USB_OTG_GRSTCTL_CSRST) {} } static void _enable_gpio(const stm32_usb_otg_fshs_config_t *conf) { /* Enables clock on the GPIO bus */ gpio_init(conf->dp, GPIO_IN); gpio_init(conf->dm, GPIO_IN); /* Configure AF for the pins */ gpio_init_af(conf->dp, conf->af); gpio_init_af(conf->dm, conf->af); } static void _set_mode_device(stm32_usb_otg_fshs_t *usbdev) { const stm32_usb_otg_fshs_config_t *conf = usbdev->config; /* Force device mode */ _global_regs(conf)->GUSBCFG |= USB_OTG_GUSBCFG_FDMOD; /* Spinlock to prevent a context switch here, needs a delay of 25 ms when * force switching mode */ ztimer_spin(ZTIMER_MSEC, 25); } static void _usbdev_init(usbdev_t *dev) { /* Block both STOP and STANDBY, STOP is unblocked during USB suspend * status */ pm_block(STM32_PM_STOP); pm_block(STM32_PM_STANDBY); stm32_usb_otg_fshs_t *usbdev = (stm32_usb_otg_fshs_t *)dev; const stm32_usb_otg_fshs_config_t *conf = usbdev->config; /* Enable the clock to the peripheral */ periph_clk_en(conf->ahb, conf->rcc_mask); _enable_gpio(conf); /* TODO: implement ULPI mode when a board is available */ #ifdef STM32_USB_OTG_HS_ENABLED if (conf->type == STM32_USB_OTG_HS) { /* Disable the ULPI clock in low power mode, this is essential for the * peripheral when using the built-in phy */ periph_lpclk_dis(conf->ahb, RCC_AHB1LPENR_OTGHSULPILPEN); /* Only the built-in phy supported for now */ assert(conf->phy == STM32_USB_OTG_PHY_BUILTIN); _global_regs(conf)->GUSBCFG |= USB_OTG_GUSBCFG_PHYSEL; } #endif /* Reset the peripheral after phy selection */ _reset_periph(usbdev); /* Reset clock */ *_pcgcctl_reg(conf) = 0; /* Force the peripheral to device mode */ _set_mode_device(usbdev); /* Disable Vbus detection and force the pull-up on */ #ifdef STM32_USB_OTG_CID_1x /* Enable no Vbus sensing and enable 'Power Down Disable */ _global_regs(usbdev->config)->GCCFG |= USB_OTG_GCCFG_NOVBUSSENS | USB_OTG_GCCFG_PWRDWN; #else /* Enable no Vbus Detect enable and enable 'Power Down Disable */ _global_regs(usbdev->config)->GCCFG |= USB_OTG_GCCFG_VBDEN | USB_OTG_GCCFG_PWRDWN; /* Force Vbus Detect values and ID detect values to device mode */ _global_regs(usbdev->config)->GOTGCTL |= USB_OTG_GOTGCTL_VBVALOVAL | USB_OTG_GOTGCTL_VBVALOEN | USB_OTG_GOTGCTL_BVALOEN | USB_OTG_GOTGCTL_BVALOVAL; #endif /* disable fancy USB features */ _global_regs(conf)->GUSBCFG &= ~(USB_OTG_GUSBCFG_HNPCAP | USB_OTG_GUSBCFG_SRPCAP); /* Device mode init */ _device_regs(conf)->DCFG |= USB_OTG_DCFG_DSPD_Msk; /* Full speed! */ _configure_fifo(usbdev); /* Reset the receive FIFO */ _flush_rx_fifo(conf); /* Reset all TX FIFOs */ _flush_tx_fifo(conf, 0x10); /* Values from the reference manual tables on TRDT configuration * * 0x09 for 24Mhz ABH frequency, 0x06 for 32Mhz or higher AHB frequency */ uint8_t trdt = conf->type == STM32_USB_OTG_FS ? 0x06 : 0x09; _global_regs(conf)->GUSBCFG = (_global_regs(conf)->GUSBCFG & ~USB_OTG_GUSBCFG_TRDT) | (trdt << USB_OTG_GUSBCFG_TRDT_Pos); _reset_eps(usbdev); /* Disable the global NAK for both directions */ _disable_global_nak(conf); if (_uses_dma(conf)) { _global_regs(usbdev->config)->GAHBCFG |= /* Configure DMA */ USB_OTG_GAHBCFG_DMAEN | /* DMA configured as 8 x 32bit accesses */ (0x05 << USB_OTG_GAHBCFG_HBSTLEN_Pos); /* Unmask the transfer complete interrupts * Only needed when using DMA, otherwise the RX FIFO not empty * interrupt is used */ _device_regs(conf)->DOEPMSK |= USB_OTG_DOEPMSK_XFRCM; _device_regs(conf)->DIEPMSK |= USB_OTG_DIEPMSK_XFRCM; } /* Clear the interrupt flags and unmask those interrupts */ _global_regs(conf)->GINTSTS |= STM32_FSHS_USB_GINT_MASK; _global_regs(conf)->GINTMSK |= STM32_FSHS_USB_GINT_MASK; DEBUG("otg_fs: USB peripheral currently in %s mode\n", (_global_regs( conf)->GINTSTS & USB_OTG_GINTSTS_CMOD) ? "host" : "device"); /* Enable interrupts and configure the TX level to interrupt on empty */ _global_regs(conf)->GAHBCFG |= USB_OTG_GAHBCFG_GINT | USB_OTG_GAHBCFG_TXFELVL; /* Unmask the interrupt in the NVIC */ NVIC_EnableIRQ(conf->irqn); } static int _usbdev_get(usbdev_t *dev, usbopt_t opt, void *value, size_t max_len) { (void)dev; (void)max_len; int res = -ENOTSUP; switch (opt) { case USBOPT_MAX_VERSION: assert(max_len == sizeof(usb_version_t)); *(usb_version_t *)value = USB_VERSION_20; res = sizeof(usb_version_t); break; case USBOPT_MAX_SPEED: assert(max_len == sizeof(usb_speed_t)); *(usb_speed_t *)value = USB_SPEED_FULL; res = sizeof(usb_speed_t); break; default: DEBUG("otg_fs: Unhandled get call: 0x%x\n", opt); break; } return res; } static int _usbdev_set(usbdev_t *dev, usbopt_t opt, const void *value, size_t value_len) { (void)value_len; stm32_usb_otg_fshs_t *usbdev = (stm32_usb_otg_fshs_t *)dev; int res = -ENOTSUP; switch (opt) { case USBOPT_ADDRESS: assert(value_len == sizeof(uint8_t)); uint8_t addr = (*((uint8_t *)value)); _set_address(usbdev, addr); break; case USBOPT_ATTACH: assert(value_len == sizeof(usbopt_enable_t)); if (*((usbopt_enable_t *)value)) { _usb_attach(usbdev); } else { _usb_detach(usbdev); } res = sizeof(usbopt_enable_t); break; default: DEBUG("otg_fs: Unhandled set call: 0x%x\n", opt); break; } return res; } static void _usbdev_esr(usbdev_t *dev) { stm32_usb_otg_fshs_t *usbdev = (stm32_usb_otg_fshs_t *)dev; const stm32_usb_otg_fshs_config_t *conf = usbdev->config; uint32_t int_status = _global_regs(conf)->GINTSTS; uint32_t event = 0; if (int_status & USB_OTG_GINTSTS_ENUMDNE) { event = USB_OTG_GINTSTS_ENUMDNE; /* Reset condition done */ DEBUG("otg_fs: Reset done\n"); usbdev->usbdev.cb(&usbdev->usbdev, USBDEV_EVENT_RESET); } else if (int_status & USB_OTG_GINTSTS_USBRST) { /* Start of reset condition */ event = USB_OTG_GINTSTS_USBRST; DEBUG("otg_fs: Reset start\n"); if (usbdev->suspend) { usbdev->suspend = false; _wake_periph(conf); DEBUG("otg_fs: PHY SUSP %lx\n", *_pcgcctl_reg(conf)); } /* Reset all the things! */ _flush_rx_fifo(conf); _flush_tx_fifo(conf, 0x10); _reset_eps(usbdev); _set_address(usbdev, 0); } else if (int_status & USB_OTG_GINTSTS_SRQINT) { /* Reset done */ event = USB_OTG_GINTSTS_SRQINT; DEBUG("otg_fs: Session request\n"); } else if (int_status & USB_OTG_GINTSTS_USBSUSP) { event = USB_OTG_GINTSTS_USBSUSP; if (!usbdev->suspend) { usbdev->usbdev.cb(&usbdev->usbdev, USBDEV_EVENT_SUSPEND); usbdev->suspend = true; /* Disable USB clock */ _sleep_periph(conf); } } else if (int_status & USB_OTG_GINTSTS_WKUINT) { event = USB_OTG_GINTSTS_WKUINT; if (usbdev->suspend) { usbdev->suspend = false; /* re-enable USB clock */ _wake_periph(conf); usbdev->usbdev.cb(&usbdev->usbdev, USBDEV_EVENT_RESUME); } } _global_regs(conf)->GINTSTS |= event; _global_regs(conf)->GAHBCFG |= USB_OTG_GAHBCFG_GINT; } static void _usbdev_ep_init(usbdev_ep_t *ep) { DEBUG("otg_fs: Initializing EP %u, %s\n", ep->num, ep->dir == USB_EP_DIR_IN ? "IN" : "OUT"); } static size_t _get_available(usbdev_ep_t *ep) { stm32_usb_otg_fshs_t *usbdev = (stm32_usb_otg_fshs_t *)ep->dev; const stm32_usb_otg_fshs_config_t *conf = usbdev->config; return ep->len - (_out_regs(conf, ep->num)->DOEPTSIZ & USB_OTG_DOEPTSIZ_XFRSIZ_Msk); } static int _usbdev_ep_get(usbdev_ep_t *ep, usbopt_ep_t opt, void *value, size_t max_len) { (void)max_len; int res = -ENOTSUP; switch (opt) { case USBOPT_EP_AVAILABLE: assert(max_len == sizeof(size_t)); *(size_t *)value = _get_available(ep); res = sizeof(size_t); break; default: DEBUG("otg_fs: Unhandled endpoint get call: 0x%x\n", opt); break; } return res; } static void _ep_set_stall(usbdev_ep_t *ep, bool enable) { stm32_usb_otg_fshs_t *usbdev = (stm32_usb_otg_fshs_t *)ep->dev; const stm32_usb_otg_fshs_config_t *conf = usbdev->config; (void)enable; if (ep->dir == USB_EP_DIR_IN) { /* Disable first */ _ep_in_disable(conf, ep->num); _in_regs(conf, ep->num)->DIEPCTL |= USB_OTG_DIEPCTL_STALL; } else { /* Disable first */ _ep_out_disable(conf, ep->num); _out_regs(conf, ep->num)->DOEPCTL |= USB_OTG_DOEPCTL_STALL; } } static int _usbdev_ep_set(usbdev_ep_t *ep, usbopt_ep_t opt, const void *value, size_t value_len) { (void)value_len; int res = -ENOTSUP; switch (opt) { case USBOPT_EP_ENABLE: assert(value_len == sizeof(usbopt_enable_t)); if (*((usbopt_enable_t *)value)) { _ep_activate(ep); } else { _ep_deactivate(ep); } res = sizeof(usbopt_enable_t); break; case USBOPT_EP_STALL: assert(value_len == sizeof(usbopt_enable_t)); _ep_set_stall(ep, *(usbopt_enable_t *)value); res = sizeof(usbopt_enable_t); break; default: DEBUG("otg_fs: Unhandled endpoint set call: 0x%x\n", opt); break; } return res; } static int _usbdev_ep_ready(usbdev_ep_t *ep, size_t len) { stm32_usb_otg_fshs_t *usbdev = (stm32_usb_otg_fshs_t *)ep->dev; const stm32_usb_otg_fshs_config_t *conf = usbdev->config; if (ep->dir == USB_EP_DIR_IN) { /* Abort when the endpoint is not active, prevents hangs, * could be an assert in the future maybe */ if (!(_in_regs(conf, ep->num)->DIEPCTL & USB_OTG_DIEPCTL_USBAEP)) { return -1; } if (_uses_dma(conf)) { _in_regs(conf, ep->num)->DIEPDMA = (uint32_t)ep->buf; } /* The order here is crucial (AFAIK), it is required to first set the * size and the packet count, then clear the NAK and enable the * endpoint, and finally fill the transmit FIFO with the packet data. * When DMA is enabled, filling the transmit FIFO is handled by the DMA * controller in the peripheral */ /* Packet count seems not to decrement below 1 and thus is broken in * combination with the TXFE irq, it does however work with control * transfers and when using DMA */ uint32_t dieptsiz = (len & USB_OTG_DIEPTSIZ_XFRSIZ_Msk); if (ep->num == 0 || _uses_dma(conf)) { dieptsiz |= (1 << USB_OTG_DIEPTSIZ_PKTCNT_Pos); } _in_regs(conf, ep->num)->DIEPTSIZ = dieptsiz; /* Intentionally enabling this before the FIFO is filled, unmasking the * interrupts after the FIFO is filled doesn't always trigger the ISR */ /* TX FIFO empty interrupt is only used in non-dma mode */ _device_regs(conf)->DAINTMSK |= 1 << ep->num; _device_regs(conf)->DIEPEMPMSK |= 1 << ep->num; _in_regs(conf, ep->num)->DIEPCTL |= USB_OTG_DIEPCTL_CNAK | USB_OTG_DIEPCTL_EPENA; if (len > 0 && !_uses_dma(conf)) { /* The FIFO requires 32 bit word reads/writes */ size_t words = (len + 3) / 4; uint32_t *ep_buf = (uint32_t *)ep->buf; __O uint32_t *fifo = _tx_fifo(conf, ep->num); for (size_t i = 0; i < words; i++) { fifo[i] = ep_buf[i]; } } } else { /* Abort when the endpoint is not active, prevents hangs, * could be an assert in the future maybe */ if (!(_out_regs(conf, ep->num)->DOEPCTL & USB_OTG_DOEPCTL_USBAEP)) { return -1; } if (_uses_dma(conf)) { _out_regs(conf, ep->num)->DOEPDMA = (uint32_t)ep->buf; } /* Configure to receive one packet with ep->len as max length */ uint32_t doeptsiz = (1 << USB_OTG_DOEPTSIZ_PKTCNT_Pos) | (ep->len & USB_OTG_DOEPTSIZ_XFRSIZ_Msk); doeptsiz |= (ep->num == 0) ? 1 << USB_OTG_DOEPTSIZ_STUPCNT_Pos : 0; _out_regs(conf, ep->num)->DOEPTSIZ = doeptsiz; _out_regs(conf, ep->num)->DOEPCTL |= USB_OTG_DOEPCTL_CNAK | USB_OTG_DOEPCTL_EPENA | _type_to_reg(ep->type); } return 0; } static void _copy_rxfifo(stm32_usb_otg_fshs_t *usbdev, uint8_t *buf, size_t len) { /* The FIFO requires 32 bit word reads/writes */ uint32_t *buf32 = (uint32_t *)buf; __I uint32_t *fifo32 = _rx_fifo(usbdev->config); size_t count = (len + 3) / 4; for (size_t i = 0; i < count; i++) { buf32[i] = fifo32[i]; } } static void _read_packet(usbdev_ep_t *ep) { stm32_usb_otg_fshs_t *usbdev = (stm32_usb_otg_fshs_t *)ep->dev; const stm32_usb_otg_fshs_config_t *conf = usbdev->config; /* Pop status from the receive fifo status register */ uint32_t status = _global_regs(conf)->GRXSTSP; /* Packet status code */ unsigned pkt_status = (status & USB_OTG_GRXSTSP_PKTSTS_Msk) >> USB_OTG_GRXSTSP_PKTSTS_Pos; size_t len = (status & USB_OTG_GRXSTSP_BCNT_Msk) >> USB_OTG_GRXSTSP_BCNT_Pos; /* Packet is copied on the update status and copied on the transfer * complete status*/ if (pkt_status == STM32_PKTSTS_DATA_UPDT || pkt_status == STM32_PKTSTS_SETUP_UPDT) { _copy_rxfifo(usbdev, ep->buf, len); #ifdef STM32_USB_OTG_CID_2x /* CID 2x doesn't signal SETUP_COMP on non-zero length packets, signal * the TR_COMPLETE event immediately */ if (ep->num == 0 && len) { usbdev->usbdev.epcb(&usbdev->out[ep->num], USBDEV_EVENT_TR_COMPLETE); } #endif /* STM32_USB_OTG_CID_2x */ } /* On zero length frames, only the COMP status is signalled and the UPDT * status is skipped */ else if (pkt_status == STM32_PKTSTS_XFER_COMP || pkt_status == STM32_PKTSTS_SETUP_COMP) { usbdev->usbdev.epcb(&usbdev->out[ep->num], USBDEV_EVENT_TR_COMPLETE); } } /* This signals to the upper stack a completed transfer. Control transfers * behave slightly different with the interrupts, so a number of conditionals * filter interrupts to events */ static void _usbdev_ep_esr(usbdev_ep_t *ep) { stm32_usb_otg_fshs_t *usbdev = (stm32_usb_otg_fshs_t *)ep->dev; const stm32_usb_otg_fshs_config_t *conf = usbdev->config; if (ep->dir == USB_EP_DIR_IN) { uint32_t status = _in_regs(conf, ep->num)->DIEPINT; /* XFRC interrupt is used for all endpoints when DMA is enabled */ if (status & USB_OTG_DIEPINT_XFRC && _uses_dma(conf)) { _in_regs(conf, ep->num)->DIEPINT = USB_OTG_DIEPINT_XFRC; if (ep->num != 0) { usbdev->usbdev.epcb(ep, USBDEV_EVENT_TR_COMPLETE); } } else /* TXFE empty interrupt is only used with DMA disabled */ if (status & USB_OTG_DIEPINT_TXFE) { _device_regs(conf)->DIEPEMPMSK &= ~(1 << ep->num); usbdev->usbdev.epcb(ep, USBDEV_EVENT_TR_COMPLETE); } } else { /* RX FIFO not empty and the endpoint matches the function argument */ if ((_global_regs(conf)->GINTSTS & USB_OTG_GINTSTS_RXFLVL) && (_global_regs(conf)->GRXSTSR & USB_OTG_GRXSTSP_EPNUM_Msk) == ep->num && !_uses_dma(conf)) { _read_packet(ep); } /* Transfer complete seems only reliable when used with DMA */ else if (_out_regs(conf, ep->num)->DOEPINT & USB_OTG_DOEPINT_XFRC) { _out_regs(conf, ep->num)->DOEPINT = USB_OTG_DOEPINT_XFRC; if (_uses_dma(conf)) { usbdev->usbdev.epcb(ep, USBDEV_EVENT_TR_COMPLETE); } } } /* Enable the peripheral interrupts again */ _global_regs(conf)->GAHBCFG |= USB_OTG_GAHBCFG_GINT; } static void _isr_ep(stm32_usb_otg_fshs_t *usbdev) { const stm32_usb_otg_fshs_config_t *conf = usbdev->config; /* Top 16 bits of the register is OUT endpoints, bottom 16 is IN * endpoints */ uint32_t active_ep = _device_regs(conf)->DAINT; if (active_ep) { unsigned epnum = bitarithm_lsb(active_ep); if (epnum >= STM32_USB_OTG_REG_EP_OUT_OFFSET) { usbdev->usbdev.epcb(&usbdev->out[epnum - STM32_USB_OTG_REG_EP_OUT_OFFSET], USBDEV_EVENT_ESR); } else { usbdev->usbdev.epcb(&usbdev->in[epnum], USBDEV_EVENT_ESR); } } } void _isr_common(stm32_usb_otg_fshs_t *usbdev) { const stm32_usb_otg_fshs_config_t *conf = usbdev->config; uint32_t status = _global_regs(conf)->GINTSTS; if (status) { if (status & USB_OTG_GINTSTS_RXFLVL) { unsigned epnum = _global_regs(conf)->GRXSTSR & USB_OTG_GRXSTSP_EPNUM_Msk; usbdev->usbdev.epcb(&usbdev->out[epnum], USBDEV_EVENT_ESR); } else if (_global_regs(conf)->GINTSTS & (USB_OTG_GINTSTS_OEPINT | USB_OTG_GINTSTS_IEPINT)) { _isr_ep(usbdev); } else { /* Global interrupt */ usbdev->usbdev.cb(&usbdev->usbdev, USBDEV_EVENT_ESR); } _global_regs(conf)->GAHBCFG &= ~USB_OTG_GAHBCFG_GINT; } cortexm_isr_end(); } #ifdef STM32_USB_OTG_FS_ENABLED void isr_otg_fs(void) { /* Take the first device from the list */ stm32_usb_otg_fshs_t *usbdev = &_usbdevs[0]; _isr_common(usbdev); } #endif /* STM32_USB_OTG_FS_ENABLED */ #ifdef STM32_USB_OTG_HS_ENABLED void isr_otg_hs(void) { /* Take the last usbdev device from the list */ stm32_usb_otg_fshs_t *usbdev = &_usbdevs[USBDEV_NUMOF - 1]; _isr_common(usbdev); } #endif /* STM32_USB_OTG_HS_ENABLED */ const usbdev_driver_t driver = { .init = _usbdev_init, .new_ep = _usbdev_new_ep, .get = _usbdev_get, .set = _usbdev_set, .esr = _usbdev_esr, .ep_init = _usbdev_ep_init, .ep_get = _usbdev_ep_get, .ep_set = _usbdev_ep_set, .ep_esr = _usbdev_ep_esr, .ready = _usbdev_ep_ready, };