# Target triple for the build. Use arm-none-eabi if you are unsure. export TARGET_ARCH ?= arm-none-eabi # define build specific options export CFLAGS_CPU = -mcpu=$(MCPU) -mlittle-endian -mthumb $(CFLAGS_FPU) ifneq (llvm,$(TOOLCHAIN)) # Clang (observed with v3.7) does not understand -mno-thumb-interwork, only add if # not building with LLVM export CFLAGS += -mno-thumb-interwork endif export CFLAGS_LINK = -ffunction-sections -fdata-sections -fno-builtin -fshort-enums export CFLAGS_DBG ?= -ggdb -g3 export CFLAGS_OPT ?= -Os export CFLAGS += $(CFLAGS_CPU) $(CFLAGS_LINK) $(CFLAGS_DBG) $(CFLAGS_OPT) export ASFLAGS += $(CFLAGS_CPU) $(CFLAGS_DBG) export LINKFLAGS += -L$(RIOTCPU)/$(CPU)/ldscripts -L$(RIOTCPU)/cortexm_common/ldscripts export LINKER_SCRIPT ?= $(CPU_MODEL).ld export LINKFLAGS += -T$(LINKER_SCRIPT) -Wl,--fatal-warnings export LINKFLAGS += $(CFLAGS_CPU) $(CFLAGS_DBG) $(CFLAGS_OPT) -static -lgcc -nostartfiles export LINKFLAGS += -Wl,--gc-sections # Tell the build system that the CPU depends on the Cortex-M common files: export USEMODULE += cortexm_common # Export the peripheral drivers to be linked into the final binary: export USEMODULE += periph # include common periph code export USEMODULE += periph_common export USEMODULE += cortexm_common_periph # all cortex MCU's use newlib as libc export USEMODULE += newlib # set default for CPU_MODEL export CPU_MODEL ?= $(CPU) # Temporary LLVM/Clang Workaround: # report cortex-m0 instead of cortex-m0plus if llvm/clang (<= 3.6.2) is used # llvm/clang version 3.6.2 still does not support the cortex-m0plus mcpu type ifeq (llvm,$(TOOLCHAIN)) ifeq (cortex-m0plus,$(CPU_ARCH)) LLVM_UNSUP = $(shell clang -target arm-none-eabi -mcpu=$(CPU_ARCH) -c -x c /dev/null -o /dev/null \ > /dev/null 2>&1 || echo 1 ) ifeq (1,$(LLVM_UNSUP)) CPU_ARCH = cortex-m0 endif endif endif # export the CPU model and architecture MODEL = $(shell echo $(CPU_MODEL) | tr 'a-z' 'A-Z') export CFLAGS += -DCPU_MODEL_$(MODEL) ARCH = $(shell echo $(CPU_ARCH) | tr 'a-z-' 'A-Z_') export CFLAGS += -DCPU_ARCH_$(ARCH) # set the compiler specific CPU and FPU options ifeq ($(CPU_ARCH),cortex-m4f) # TODO: enable hard floating points for the M4F once the context save/restore # code is adjusted to take care of FPU registers #export CFLAGS_FPU += -mfloat-abi=hard -mfpu=fpv4-sp-d16 export MCPU := cortex-m4 endif CFLAGS_FPU ?= -mfloat-abi=soft export MCPU ?= $(CPU_ARCH) # CMSIS DSP needs to know about the CPU core ifneq (,$(filter cmsis-dsp,$(USEPKG))) # definition needed to use cmsis-dsp headers ifeq ($(CPU_ARCH),cortex-m0) export CFLAGS += -DARM_MATH_CM0 else ifeq ($(CPU_ARCH),cortex-m0plus) export CFLAGS += -DARM_MATH_CM0PLUS else ifeq ($(CPU_ARCH),cortex-m3) export CFLAGS += -DARM_MATH_CM3 else ifeq ($(CPU_ARCH),cortex-m4) export CFLAGS += -DARM_MATH_CM4 else ifeq ($(CPU_ARCH),cortex-m4f) export CFLAGS += -DARM_MATH_CM4 else ifeq ($(CPU_ARCH),cortex-m7) export CFLAGS += -DARM_MATH_CM7 endif endif # Explicitly tell the linker to link the startup code. # Without this the interrupt vectors will not be linked correctly! VECTORS_O ?= $(BINDIR)/cpu/vectors.o ifeq ($(COMMON_STARTUP),) export UNDEF += $(VECTORS_O) endif # CPU depends on the cortex-m common module, so include it: include $(RIOTCPU)/cortexm_common/Makefile.include # use the nano-specs of Newlib when available USEMODULE += newlib_nano export USE_NANO_SPECS = 1 # Avoid overriding the default rule: all: # Rule to generate assembly listings from ELF files: %.lst: %.elf $(OBJDUMP) $(OBJDUMPFLAGS) $< > $@