/* * Copyright (C) 2018 Eistec AB * * This file is subject to the terms and conditions of the GNU Lesser * General Public License v2.1. See the file LICENSE in the top level * directory for more details. */ #include #include "embUnit.h" #include "tests-matstat.h" #include "matstat.h" #define ENABLE_DEBUG (0) #include "debug.h" /* White box testing of matstat library */ static void test_matstat_basic(void) { /* nothing special, only verifying the basic functionality */ matstat_state_t state = MATSTAT_STATE_INIT; matstat_add(&state, 10); TEST_ASSERT_EQUAL_INT(10, state.min); TEST_ASSERT_EQUAL_INT(10, state.max); TEST_ASSERT_EQUAL_INT(1, state.count); matstat_add(&state, 20); TEST_ASSERT_EQUAL_INT(10, state.min); TEST_ASSERT_EQUAL_INT(20, state.max); TEST_ASSERT_EQUAL_INT(2, state.count); matstat_add(&state, 30); TEST_ASSERT_EQUAL_INT(10, state.min); TEST_ASSERT_EQUAL_INT(30, state.max); TEST_ASSERT_EQUAL_INT(3, state.count); matstat_add(&state, 40); TEST_ASSERT_EQUAL_INT(10, state.min); TEST_ASSERT_EQUAL_INT(40, state.max); TEST_ASSERT_EQUAL_INT(4, state.count); int32_t mean = matstat_mean(&state); TEST_ASSERT_EQUAL_INT(25, mean); uint64_t var = matstat_variance(&state); TEST_ASSERT_EQUAL_INT(166, var); matstat_clear(&state); TEST_ASSERT_EQUAL_INT(0, state.count); } static void test_matstat_var_stability(void) { /* This test is designed to detect stability errors where the values are * located very close together, which should yield a very low variance. */ /* The initial implementation of the variance algorithm resulted in a very * large variance in this test, due to cancellation problems */ matstat_state_t state = MATSTAT_STATE_INIT; matstat_add(&state, 999999); matstat_add(&state, 1000000); matstat_add(&state, 1000000); matstat_add(&state, 1000000); matstat_add(&state, 1000000); matstat_add(&state, 1000000); matstat_add(&state, 1000000); matstat_add(&state, 1000000); matstat_add(&state, 1000000); matstat_add(&state, 1000000); int32_t mean = matstat_mean(&state); TEST_ASSERT(mean >= 999999); TEST_ASSERT(mean <= 1000000); uint64_t var = matstat_variance(&state); TEST_ASSERT(var <= 1); } static void test_matstat_negative_variance(void) { /* This is a regression test for two related problems where the truncation * in the mean computation (integer division) causes the sum_sq value to become * negative, or the variance itself to become negative */ matstat_state_t state = MATSTAT_STATE_INIT; matstat_add(&state, -1); matstat_add(&state, 0); uint64_t var = matstat_variance(&state); TEST_ASSERT_EQUAL_INT(0, var); matstat_clear(&state); matstat_add(&state, 1); matstat_add(&state, 0); matstat_add(&state, 0); matstat_add(&state, 0); var = matstat_variance(&state); TEST_ASSERT_EQUAL_INT(0, var); matstat_clear(&state); matstat_add(&state, 1234567); for (unsigned int k = 0; k < 9999; ++k) { matstat_add(&state, 1234567); matstat_add(&state, 1234566); } var = matstat_variance(&state); TEST_ASSERT_EQUAL_INT(0, var); } static void test_matstat_merge_basic(void) { /* This is a basic test of the merging functionality without any "special" cases */ matstat_state_t state1 = MATSTAT_STATE_INIT; matstat_state_t state2 = MATSTAT_STATE_INIT; matstat_state_t state_ref = MATSTAT_STATE_INIT; matstat_add(&state1, 2000); matstat_add(&state_ref, 2000); matstat_add(&state1, 1000); matstat_add(&state_ref, 1000); matstat_add(&state1, 2000); matstat_add(&state_ref, 2000); matstat_add(&state2, 2000); matstat_add(&state_ref, 2000); matstat_add(&state2, 2456); matstat_add(&state_ref, 2456); matstat_add(&state2, 1234); matstat_add(&state_ref, 1234); matstat_add(&state2, 5678); matstat_add(&state_ref, 5678); matstat_add(&state2, 9999); matstat_add(&state_ref, 9999); matstat_merge(&state1, &state2); TEST_ASSERT_EQUAL_INT(state_ref.min, state1.min); TEST_ASSERT_EQUAL_INT(state_ref.max, state1.max); TEST_ASSERT_EQUAL_INT(state_ref.count, state1.count); TEST_ASSERT_EQUAL_INT(state_ref.sum, state1.sum); int32_t mean = matstat_mean(&state1); int32_t mean_ref = matstat_mean(&state_ref); TEST_ASSERT_EQUAL_INT(mean_ref, mean); } static void test_matstat_merge_empty(void) { /* Testing merging with one or more empty states */ matstat_state_t state1 = MATSTAT_STATE_INIT; matstat_state_t state2 = MATSTAT_STATE_INIT; matstat_merge(&state1, &state2); TEST_ASSERT_EQUAL_INT(0, state1.count); TEST_ASSERT_EQUAL_INT(0, state2.count); TEST_ASSERT_EQUAL_INT(0, state1.sum); TEST_ASSERT_EQUAL_INT(0, state2.sum); TEST_ASSERT_EQUAL_INT(0, state1.sum_sq); TEST_ASSERT_EQUAL_INT(0, state2.sum_sq); matstat_add(&state1, 2000); matstat_add(&state1, 1000); matstat_add(&state1, 2000); matstat_merge(&state1, &state2); TEST_ASSERT_EQUAL_INT(1000, state1.min); TEST_ASSERT_EQUAL_INT(2000, state1.max); TEST_ASSERT_EQUAL_INT(3, state1.count); TEST_ASSERT_EQUAL_INT(0, state2.count); matstat_clear(&state1); TEST_ASSERT_EQUAL_INT(0, state1.count); matstat_add(&state2, 2000); matstat_add(&state2, 1000); matstat_add(&state2, 2000); TEST_ASSERT_EQUAL_INT(3, state2.count); matstat_merge(&state1, &state2); TEST_ASSERT_EQUAL_INT(1000, state1.min); TEST_ASSERT_EQUAL_INT(2000, state1.max); TEST_ASSERT_EQUAL_INT(3, state1.count); } static void test_matstat_merge_variance(void) { /* This test should ensure that merging states from separate sequences will * yield correct results for the variance computation */ matstat_state_t state1 = MATSTAT_STATE_INIT; matstat_state_t state2 = MATSTAT_STATE_INIT; matstat_state_t state_ref = MATSTAT_STATE_INIT; matstat_add(&state1, 2000); matstat_add(&state_ref, 2000); matstat_add(&state1, 1000); matstat_add(&state_ref, 1000); matstat_add(&state1, 2000); matstat_add(&state_ref, 2000); matstat_add(&state2, 9999); matstat_add(&state_ref, 9999); matstat_add(&state2, 2456); matstat_add(&state_ref, 2456); matstat_add(&state2, 1234); matstat_add(&state_ref, 1234); matstat_add(&state2, 5678); matstat_add(&state_ref, 5678); matstat_add(&state2, 9999); matstat_add(&state_ref, 9999); matstat_merge(&state1, &state2); uint64_t var = matstat_variance(&state1); uint64_t var_ref = matstat_variance(&state_ref); int64_t var_diff = var - var_ref; /* There will invariably be some loss of accuracy because of the integer * operations involved in the variance computation. */ TEST_ASSERT(var_diff < 1000); TEST_ASSERT(var_diff > -1000); TEST_ASSERT_EQUAL_INT(state_ref.mean, state1.mean); } static void test_matstat_merge_variance_regr1(void) { /* This is a regression check for an issue where the sum_sq variable became * negative after merging a sequence of states with different means, and * small but non-zero sum_sq values. */ /* Numbers were taken from a stats dump from the bench_timers application */ matstat_state_t inputs[] = { { .count = 2686, .sum = 5414, .sum_sq = 1380, .min = 1, .max = 3, .mean = 2 }, { .count = 2643, .sum = 5272, .sum_sq = 3263, .min = 1, .max = 3, .mean = 1 }, { .count = 2650, .sum = 5328, .sum_sq = 719, .min = 1, .max = 3, .mean = 2 }, { .count = 2562, .sum = 5117, .sum_sq = 2756, .min = 1, .max = 3, .mean = 1 }, { .count = 2579, .sum = 5157, .sum_sq = 635, .min = 1, .max = 3, .mean = 1 }, { .count = 2533, .sum = 5050, .sum_sq = 2944, .min = 1, .max = 3, .mean = 1 }, { .count = 2630, .sum = 5276, .sum_sq = 1078, .min = 1, .max = 3, .mean = 2 }, { .count = 2667, .sum = 5333, .sum_sq = 974, .min = 1, .max = 3, .mean = 1 }, { .count = 2414, .sum = 4859, .sum_sq = 1074, .min = 1, .max = 3, .mean = 2 }, }; matstat_state_t merged = MATSTAT_STATE_INIT; for (unsigned k = 0; k < sizeof(inputs) / sizeof(inputs[0]); ++k) { matstat_merge(&merged, &inputs[k]); } int64_t var = (int64_t)matstat_variance(&merged); /* Expected variance for this input is 0, because of integer truncation of the result. * The bug gave the following result instead: * count = 23364, sum = 46806, sum_sq = 18446744073709540510, mean = 2, var = 789570863061659 */ /* Left here for debugging test case failures: */ /* printf("\nmerged: count = %" PRIu32 ", sum = %" PRId64 ", sum_sq = %" PRIu64 ", " "mean = %" PRId32 ", var = %" PRIu64 "\n", merged.count, merged.sum, merged.sum_sq, merged.mean, var); */ TEST_ASSERT((int64_t)merged.sum_sq > 0); TEST_ASSERT(var >= 0); } static void test_matstat_accuracy(void) { /* This test verifies that the numeric accuracy is "good enough" */ matstat_state_t state = MATSTAT_STATE_INIT; /* * The test values below were sampled from a normal distribution with * mean = 12345 * standard deviation = 10000 => variance = 100000000 * * The sample distribution, when computed with double precision floating * point values, is: * sample variance = 115969073.207895 * sample mean = 12293.05 */ /* This test will fail unless the library adaptively adjusts the offset to * reduce the error in the variance */ matstat_add(&state, -9228); matstat_add(&state, 6225); matstat_add(&state, 15935); matstat_add(&state, 1171); matstat_add(&state, 9500); matstat_add(&state, 22805); matstat_add(&state, 6484); matstat_add(&state, 10157); matstat_add(&state, 23870); matstat_add(&state, 9010); matstat_add(&state, 16093); matstat_add(&state, 20969); matstat_add(&state, 18077); matstat_add(&state, 9202); matstat_add(&state, 20074); matstat_add(&state, 19236); matstat_add(&state, 32276); matstat_add(&state, 6342); matstat_add(&state, 18759); matstat_add(&state, -11096); int32_t mean = matstat_mean(&state); uint64_t var = matstat_variance(&state); int64_t var_diff = var - 115969073; TEST_ASSERT(var_diff < 10000); TEST_ASSERT(var_diff > -10000); TEST_ASSERT_EQUAL_INT(12293, mean); } Test *tests_matstat_tests(void) { EMB_UNIT_TESTFIXTURES(fixtures) { new_TestFixture(test_matstat_basic), new_TestFixture(test_matstat_var_stability), new_TestFixture(test_matstat_merge_basic), new_TestFixture(test_matstat_merge_empty), new_TestFixture(test_matstat_merge_variance), new_TestFixture(test_matstat_merge_variance_regr1), new_TestFixture(test_matstat_accuracy), new_TestFixture(test_matstat_negative_variance), }; EMB_UNIT_TESTCALLER(matstat_tests, NULL, NULL, fixtures); return (Test *)&matstat_tests; } void tests_matstat(void) { TESTS_RUN(tests_matstat_tests()); }