/* * Copyright (C) 2015-2017 Freie Universität Berlin * * This file is subject to the terms and conditions of the GNU Lesser * General Public License v2.1. See the file LICENSE in the top level * directory for more details. */ /** * @ingroup drivers_nrf5x_nrfmin * @{ * * @file * @brief Implementation of the nrfmin radio driver for nRF51 radios * * @author Hauke Petersen * * @} */ #include #include #include "cpu.h" #include "mutex.h" #include "assert.h" #include "periph_conf.h" #include "periph/cpuid.h" #include "nrfmin.h" #include "net/netdev.h" #ifdef MODULE_GNRC_SIXLOWPAN #include "net/gnrc/nettype.h" #endif #define ENABLE_DEBUG (0) #include "debug.h" /** * @brief Driver specific device configuration * @{ */ #define CONF_MODE RADIO_MODE_MODE_Nrf_1Mbit #define CONF_LEN (8U) #define CONF_S0 (0U) #define CONF_S1 (0U) #define CONF_STATLEN (0U) #define CONF_BASE_ADDR_LEN (4U) #define CONF_ENDIAN RADIO_PCNF1_ENDIAN_Big #define CONF_WHITENING RADIO_PCNF1_WHITEEN_Disabled #define CONF_CRC_LEN (2U) #define CONF_CRC_POLY (0x11021) #define CONF_CRC_INIT (0xf0f0f0) /** @} */ /** * @brief Driver specific address configuration * @{ */ #define CONF_ADDR_PREFIX0 (0xe7e7e7e7) #define CONF_ADDR_BASE (0xe7e70000) #define CONF_ADDR_BCAST (CONF_ADDR_BASE | NRFMIN_ADDR_BCAST) /** @} */ /** * @brief We define a pseudo NID for compliance to 6LoWPAN */ #define CONF_PSEUDO_NID (0xaffe) /** * @brief Driver specific (interrupt) events (not all of them used currently) * @{ */ #define ISR_EVENT_RX_START (0x0001) #define ISR_EVENT_RX_DONE (0x0002) #define ISR_EVENT_TX_START (0x0004) #define ISR_EVENT_TX_DONE (0x0008) #define ISR_EVENT_WRONG_CHKSUM (0x0010) /** @} */ /** * @brief Possible internal device states */ typedef enum { STATE_OFF, /**< device is powered off */ STATE_IDLE, /**< device is in idle mode */ STATE_RX, /**< device is in receive mode */ STATE_TX, /**< device is transmitting data */ } state_t; /** * @brief Since there can only be 1 nrfmin device, we allocate it right here */ netdev_t nrfmin_dev; /** * @brief For faster lookup we remember our own 16-bit address */ static uint16_t my_addr; /** * @brief We need to keep track of the radio state in SW (-> PAN ID 20) * * See nRF51822 PAN ID 20: RADIO State Register is not functional. */ static volatile state_t state = STATE_OFF; /** * @brief We also remember the 'long-term' state, so we can resume after TX */ static volatile state_t target_state = STATE_OFF; /** * @brief When sending out data, the data needs to be in one continuous memory * region. So we need to buffer outgoing data on the driver level. */ static nrfmin_pkt_t tx_buf; /** * @brief As the device is memory mapped, we need some space to save incoming * data to. * * @todo Improve the RX buffering to at least use double buffering */ static nrfmin_pkt_t rx_buf; /** * @brief While we listen for incoming data, we lock the RX buffer */ static volatile uint8_t rx_lock = 0; /** * @brief Set radio into idle (DISABLED) state */ static void go_idle(void) { /* set device into basic disabled state */ NRF_RADIO->EVENTS_DISABLED = 0; NRF_RADIO->TASKS_DISABLE = 1; while (NRF_RADIO->EVENTS_DISABLED == 0) {} /* also release any existing lock on the RX buffer */ rx_lock = 0; state = STATE_IDLE; } /** * @brief Set radio into the target state as defined by `target_state` * * Trick here is, that the driver can go back to it's previous state after a * send operation, so it can differentiate if the driver was in DISABLED or in * RX mode before the send process had started. */ static void goto_target_state(void) { go_idle(); if ((target_state == STATE_RX) && (rx_buf.pkt.hdr.len == 0)) { /* set receive buffer and our own address */ rx_lock = 1; NRF_RADIO->PACKETPTR = (uint32_t)(&rx_buf); NRF_RADIO->BASE0 = (CONF_ADDR_BASE | my_addr); /* goto RX mode */ NRF_RADIO->EVENTS_READY = 0; NRF_RADIO->TASKS_RXEN = 1; while (NRF_RADIO->EVENTS_READY == 0) {} state = STATE_RX; } if (target_state == STATE_OFF) { NRF_RADIO->POWER = 0; state = STATE_OFF; } } void nrfmin_setup(void) { nrfmin_dev.driver = &nrfmin_netdev; nrfmin_dev.event_callback = NULL; nrfmin_dev.context = NULL; } uint16_t nrfmin_get_addr(void) { return my_addr; } void nrfmin_get_iid(uint16_t *iid) { iid[0] = 0; iid[1] = 0xff00; iid[2] = 0x00fe; iid[3] = my_addr; } uint16_t nrfmin_get_channel(void) { return (uint16_t)(NRF_RADIO->FREQUENCY >> 2); } netopt_state_t nrfmin_get_state(void) { switch (state) { case STATE_OFF: return NETOPT_STATE_OFF; case STATE_IDLE: return NETOPT_STATE_SLEEP; case STATE_RX: return NETOPT_STATE_IDLE; case STATE_TX: return NETOPT_STATE_TX; default: return NETOPT_STATE_RESET; /* should never show */ } } int16_t nrfmin_get_txpower(void) { int8_t p = (int8_t)NRF_RADIO->TXPOWER; if (p < 0) { return (int16_t)(0xff00 | p); } return (int16_t)p; } void nrfmin_set_addr(uint16_t addr) { my_addr = addr; goto_target_state(); } int nrfmin_set_channel(uint16_t chan) { if (chan > NRFMIN_CHAN_MAX) { return -EOVERFLOW; } NRF_RADIO->FREQUENCY = (chan << 2); goto_target_state(); return sizeof(uint16_t); } void nrfmin_set_txpower(int16_t power) { if (power > 2) { NRF_RADIO->TXPOWER = RADIO_TXPOWER_TXPOWER_Pos4dBm; } else if (power > -2) { NRF_RADIO->TXPOWER = RADIO_TXPOWER_TXPOWER_0dBm; } else if (power > -6) { NRF_RADIO->TXPOWER = RADIO_TXPOWER_TXPOWER_Neg4dBm; } else if (power > -10) { NRF_RADIO->TXPOWER = RADIO_TXPOWER_TXPOWER_Neg8dBm; } else if (power > -14) { NRF_RADIO->TXPOWER = RADIO_TXPOWER_TXPOWER_Neg12dBm; } else if (power > -18) { NRF_RADIO->TXPOWER = RADIO_TXPOWER_TXPOWER_Neg16dBm; } else if (power > -25) { NRF_RADIO->TXPOWER = RADIO_TXPOWER_TXPOWER_Neg20dBm; } else { NRF_RADIO->TXPOWER = RADIO_TXPOWER_TXPOWER_Neg30dBm; } } int nrfmin_set_state(netopt_state_t val) { /* make sure radio is turned on and no transmission is in progress */ NRF_RADIO->POWER = 1; switch (val) { case NETOPT_STATE_OFF: target_state = STATE_OFF; break; case NETOPT_STATE_SLEEP: target_state = STATE_IDLE; break; case NETOPT_STATE_IDLE: target_state = STATE_RX; break; default: return -ENOTSUP; } goto_target_state(); return sizeof(netopt_state_t); } /** * @brief Radio interrupt routine */ void isr_radio(void) { if (NRF_RADIO->EVENTS_END == 1) { NRF_RADIO->EVENTS_END = 0; /* did we just send or receive something? */ if (state == STATE_RX) { /* drop packet on invalid CRC */ if ((NRF_RADIO->CRCSTATUS != 1) || !(nrfmin_dev.event_callback)) { rx_buf.pkt.hdr.len = 0; NRF_RADIO->TASKS_START = 1; } else { rx_lock = 0; nrfmin_dev.event_callback(&nrfmin_dev, NETDEV_EVENT_ISR); } } else if (state == STATE_TX) { goto_target_state(); } } cortexm_isr_end(); } static int nrfmin_send(netdev_t *dev, const iolist_t *iolist) { (void)dev; assert(iolist); if (state == STATE_OFF) { return -ENETDOWN; } /* wait for any ongoing transmission to finish and go into idle state */ while (state == STATE_TX) {} go_idle(); /* copy packet data into the transmit buffer */ int pos = 0; for (const iolist_t *iol = iolist; iol; iol = iol->iol_next) { if ((pos + iol->iol_len) > NRFMIN_PKT_MAX) { DEBUG("[nrfmin] send: unable to do so, packet is too large!\n"); return -EOVERFLOW; } memcpy(&tx_buf.raw[pos], iol->iol_base, iol->iol_len); pos += iol->iol_len; } /* set output buffer and destination address */ nrfmin_hdr_t *hdr = (nrfmin_hdr_t *)iolist->iol_base; NRF_RADIO->PACKETPTR = (uint32_t)(&tx_buf); NRF_RADIO->BASE0 = (CONF_ADDR_BASE | hdr->dst_addr); /* trigger the actual transmission */ DEBUG("[nrfmin] send: putting %i byte into the ether\n", (int)hdr->len); NRF_RADIO->EVENTS_READY = 0; NRF_RADIO->TASKS_TXEN = 1; while (NRF_RADIO->EVENTS_READY == 0) {} state = STATE_TX; return (int)pos; } static int nrfmin_recv(netdev_t *dev, void *buf, size_t len, void *info) { (void)dev; (void)info; if (state == STATE_OFF) { return -ENETDOWN; } unsigned pktlen = rx_buf.pkt.hdr.len; /* check if packet data is readable */ if (rx_lock || (pktlen == 0)) { DEBUG("[nrfmin] recv: no packet data available\n"); return 0; } if (buf == NULL) { if (len > 0) { /* drop packet */ DEBUG("[nrfmin] recv: dropping packet of length %i\n", pktlen); rx_buf.pkt.hdr.len = 0; goto_target_state(); } } else { DEBUG("[nrfmin] recv: reading packet of length %i\n", pktlen); pktlen = (len < pktlen) ? len : pktlen; memcpy(buf, rx_buf.raw, pktlen); rx_buf.pkt.hdr.len = 0; goto_target_state(); } return pktlen; } static int nrfmin_init(netdev_t *dev) { (void)dev; uint8_t cpuid[CPUID_LEN]; /* check given device descriptor */ assert(dev); /* initialize our own address from the CPU ID */ my_addr = 0; cpuid_get(cpuid); for (unsigned i = 0; i < CPUID_LEN; i++) { my_addr ^= cpuid[i] << (8 * (i & 0x01)); } /* power on the NRFs radio */ NRF_RADIO->POWER = 1; /* load driver specific configuration */ NRF_RADIO->MODE = CONF_MODE; /* configure variable parameters to default values */ NRF_RADIO->TXPOWER = NRFMIN_TXPOWER_DEFAULT; NRF_RADIO->FREQUENCY = NRFMIN_CHAN_DEFAULT; /* pre-configure radio addresses */ NRF_RADIO->PREFIX0 = CONF_ADDR_PREFIX0; NRF_RADIO->BASE0 = (CONF_ADDR_BASE | my_addr); NRF_RADIO->BASE1 = CONF_ADDR_BCAST; /* always send from logical address 0 */ NRF_RADIO->TXADDRESS = 0x00UL; /* and listen to logical addresses 0 and 1 */ NRF_RADIO->RXADDRESSES = 0x03UL; /* configure data fields and packet length whitening and endianess */ NRF_RADIO->PCNF0 = ((CONF_S1 << RADIO_PCNF0_S1LEN_Pos) | (CONF_S0 << RADIO_PCNF0_S0LEN_Pos) | (CONF_LEN << RADIO_PCNF0_LFLEN_Pos)); NRF_RADIO->PCNF1 = ((CONF_WHITENING << RADIO_PCNF1_WHITEEN_Pos) | (CONF_ENDIAN << RADIO_PCNF1_ENDIAN_Pos) | (CONF_BASE_ADDR_LEN << RADIO_PCNF1_BALEN_Pos) | (CONF_STATLEN << RADIO_PCNF1_STATLEN_Pos) | (NRFMIN_PKT_MAX << RADIO_PCNF1_MAXLEN_Pos)); /* configure the CRC unit, we skip the address field as this seems to lead * to wrong checksum calculation on nRF52 devices in some cases */ NRF_RADIO->CRCCNF = CONF_CRC_LEN | RADIO_CRCCNF_SKIPADDR_Msk; NRF_RADIO->CRCPOLY = CONF_CRC_POLY; NRF_RADIO->CRCINIT = CONF_CRC_INIT; /* set shortcuts for more efficient transfer */ NRF_RADIO->SHORTS = RADIO_SHORTS_READY_START_Msk; /* enable interrupts */ NVIC_EnableIRQ(RADIO_IRQn); /* enable END interrupt */ NRF_RADIO->EVENTS_END = 0; NRF_RADIO->INTENSET = RADIO_INTENSET_END_Msk; /* put device in receive mode */ target_state = STATE_RX; goto_target_state(); DEBUG("[nrfmin] initialization successful\n"); return 0; } static void nrfmin_isr(netdev_t *dev) { if (nrfmin_dev.event_callback) { nrfmin_dev.event_callback(dev, NETDEV_EVENT_RX_COMPLETE); } } static int nrfmin_get(netdev_t *dev, netopt_t opt, void *val, size_t max_len) { (void)dev; (void)max_len; switch (opt) { case NETOPT_CHANNEL: assert(max_len >= sizeof(uint16_t)); *((uint16_t *)val) = nrfmin_get_channel(); return sizeof(uint16_t); case NETOPT_ADDRESS: assert(max_len >= sizeof(uint16_t)); *((uint16_t *)val) = nrfmin_get_addr(); return sizeof(uint16_t); case NETOPT_STATE: assert(max_len >= sizeof(netopt_state_t)); *((netopt_state_t *)val) = nrfmin_get_state(); return sizeof(netopt_state_t); case NETOPT_TX_POWER: assert(max_len >= sizeof(int16_t)); *((int16_t *)val) = nrfmin_get_txpower(); return sizeof(int16_t); case NETOPT_MAX_PDU_SIZE: assert(max_len >= sizeof(uint16_t)); *((uint16_t *)val) = NRFMIN_PAYLOAD_MAX; return sizeof(uint16_t); case NETOPT_ADDR_LEN: assert(max_len >= sizeof(uint16_t)); *((uint16_t *)val) = 2; return sizeof(uint16_t); case NETOPT_NID: assert(max_len >= sizeof(uint16_t)); *((uint16_t*)val) = CONF_PSEUDO_NID; return sizeof(uint16_t); #ifdef MODULE_GNRC_SIXLOWPAN case NETOPT_PROTO: assert(max_len == sizeof(gnrc_nettype_t)); *((gnrc_nettype_t *)val) = GNRC_NETTYPE_SIXLOWPAN; return sizeof(gnrc_nettype_t); #endif case NETOPT_DEVICE_TYPE: assert(max_len >= sizeof(uint16_t)); *((uint16_t *)val) = NETDEV_TYPE_NRFMIN; return sizeof(uint16_t); case NETOPT_IPV6_IID: assert(max_len >= sizeof(uint64_t)); nrfmin_get_iid((uint16_t *)val); return sizeof(uint64_t); default: return -ENOTSUP; } } static int nrfmin_set(netdev_t *dev, netopt_t opt, const void *val, size_t len) { (void)dev; (void)len; switch (opt) { case NETOPT_CHANNEL: assert(len == sizeof(uint16_t)); return nrfmin_set_channel(*((const uint16_t *)val)); case NETOPT_ADDRESS: assert(len == sizeof(uint16_t)); nrfmin_set_addr(*((const uint16_t *)val)); return sizeof(uint16_t); case NETOPT_ADDR_LEN: case NETOPT_SRC_LEN: assert(len == sizeof(uint16_t)); if (*((const uint16_t *)val) != 2) { return -EAFNOSUPPORT; } return sizeof(uint16_t); case NETOPT_STATE: assert(len == sizeof(netopt_state_t)); return nrfmin_set_state(*((const netopt_state_t *)val)); case NETOPT_TX_POWER: assert(len == sizeof(int16_t)); nrfmin_set_txpower(*((const int16_t *)val)); return sizeof(int16_t); default: return -ENOTSUP; } } /** * @brief Export of the netdev interface */ const netdev_driver_t nrfmin_netdev = { .send = nrfmin_send, .recv = nrfmin_recv, .init = nrfmin_init, .isr = nrfmin_isr, .get = nrfmin_get, .set = nrfmin_set };