/* * Copyright (C) 2014 Freie Universität Berlin * * This file is subject to the terms and conditions of the GNU Lesser General * Public License v2.1. See the file LICENSE in the top level directory for more * details. */ /** * @ingroup cpu_cortexm4_common * @{ * * @file * @brief Implementation of the kernel's architecture dependent thread interface * * @author Stefan Pfeiffer * @author Hauke Petersen * * @} */ #include #include "arch/thread_arch.h" #include "sched.h" #include "thread.h" #include "irq.h" #include "cpu.h" #include "kernel_internal.h" /** * @name noticeable marker marking the beginning of a stack segment * * This marker is used e.g. by *thread_arch_start_threading* to identify the stacks start. */ #define STACK_MARKER (0x77777777) /** * @name ARM Cortex-M specific exception return value, that triggers the return to the task mode * stack pointer */ #define EXCEPT_RET_TASK_MODE (0xfffffffd) /** * Cortex-M knows stacks and handles register backups, so use different stack frame layout * * TODO: How to handle different Cortex-Ms? Code is so far valid for M3 and M4 without FPU * * Layout with storage of floating point registers (applicable for Cortex-M4): * ------------------------------------------------------------------------------------------------------------------------------------ * | R0 | R1 | R2 | R3 | LR | PC | xPSR | S0 | S1 | S2 | S3 | S4 | S5 | S6 | S7 | S8 | S9 | S10 | S11 | S12 | S13 | S14 | S15 | FPSCR | * ------------------------------------------------------------------------------------------------------------------------------------ * * Layout without floating point registers: * -------------------------------------- * | R0 | R1 | R2 | R3 | LR | PC | xPSR | * -------------------------------------- * */ char *thread_arch_stack_init(thread_task_func_t task_func, void *arg, void *stack_start, int stack_size) { uint32_t *stk; stk = (uint32_t *)((uintptr_t)stack_start + stack_size); /* marker */ stk--; *stk = STACK_MARKER; /* TODO: fix FPU handling for Cortex-M4 */ /* stk--; *stk = (unsigned int) 0; */ /* S0 - S15 */ /* for (int i = 15; i >= 0; i--) { stk--; *stk = i; } */ /* FIXME xPSR */ stk--; *stk = (uint32_t) 0x01000200; /* program counter */ stk--; *stk = (uint32_t) task_func; /* link register, jumped to when thread exits */ stk--; *stk = (uint32_t) sched_task_exit; /* r12 */ stk--; *stk = (uint32_t) 0; /* r1 - r3 */ for (int i = 3; i >= 1; i--) { stk--; *stk = i; } /* r0 -> thread function parameter */ stk--; *stk = (uint32_t) arg; /* r11 - r4 */ for (int i = 11; i >= 4; i--) { stk--; *stk = i; } /* lr means exception return code */ stk--; *stk = EXCEPT_RET_TASK_MODE; /* return to task-mode main stack pointer */ return (char*) stk; } void thread_arch_stack_print(void) { int count = 0; uint32_t *sp = (uint32_t *)sched_active_thread->sp; printf("printing the current stack of thread %" PRIkernel_pid "\n", thread_getpid()); printf(" address: data:\n"); do { printf(" 0x%08x: 0x%08x\n", (unsigned int)sp, (unsigned int)*sp); sp++; count++; } while (*sp != STACK_MARKER); printf("current stack size: %i byte\n", count); } __attribute__((naked)) void NORETURN thread_arch_start_threading(void) { /* enable IRQs to make sure the SVC interrupt is reachable */ __ASM volatile ("bl irq_arch_enable\n"); /* trigger the SVC interrupt which will get and execute the next thread */ __ASM volatile ("svc #1\n"); /* This line is unreachable, infinite loop */ __ASM volatile ( "unreachable%=:\n" "b unreachable%=\n" :::); } void thread_arch_yield(void) { /* trigger the PENDSV interrupt to run scheduler and schedule new thread if applicable */ SCB->ICSR |= SCB_ICSR_PENDSVSET_Msk; } /** * @brief The svc is used for running the scheduler and scheduling a new task during start-up or * after a thread has exited */ void isr_svc(void); /** * @brief All task switching activity is carried out in the PendSV interrupt */ void isr_pendsv(void); __attribute__((naked)) void arch_context_switch(void) { /* {r0-r3,r12,LR,PC,xPSR} are saved automatically on exception entry */ __ASM volatile ( /* PendSV handler entry point */ ".global isr_pendsv \n" ".thumb_func \n" "isr_pendsv: \n" /* Save the context */ /* save unsaved registers */ ".thumb_func \n" "context_save:" "mrs r0, psp \n" /* get stack pointer from user mode */ "stmdb r0!,{r4-r11} \n" /* save regs */ "stmdb r0!,{lr} \n" /* exception return value */ /* "vstmdb sp!, {s16-s31} \n" */ /* TODO save FPU registers if needed */ "ldr r1, =sched_active_thread \n" /* load address of current tcb */ "ldr r1, [r1] \n" /* dereference pdc */ "str r0, [r1] \n" /* write r0 to pdc->sp means current threads stack pointer */ /* SVC handler entry point */ /* PendSV will continue from above and through this part as well */ ".global isr_svc \n" ".thumb_func \n" "isr_svc: \n" /* perform scheduling */ "bl sched_run \n" /* Restore context and return from exception */ ".thumb_func \n" "context_restore: \n" "ldr r0, =sched_active_thread \n" /* load address of current TCB */ "ldr r0, [r0] \n" /* dereference TCB */ "ldr r1, [r0] \n" /* load tcb->sp to register 1 */ "ldmia r1!, {r0} \n" /* restore exception return value from stack */ /* "pop {s16-s31} \n" */ /* TODO load FPU register if needed depends on r0 exret */ "ldmia r1!, {r4-r11} \n" /* restore other registers */ "msr psp, r1 \n" /* restore PSP register (user mode SP)*/ "bx r0 \n" /* load exception return value to PC causes end of exception*/ /* {r0-r3,r12,LR,PC,xPSR} are restored automatically on exception return */ ); }