/* * Copyright (C) 2020 Kaspar Schleiser * 2020 Inria * 2020 Freie Universität Berlin * * This file is subject to the terms and conditions of the GNU Lesser General * Public License v2.1. See the file LICENSE in the top level directory for more * details. */ /** * @defgroup sys_ztimer_util ztimer utility functions * @ingroup sys_ztimer * @{ * * @file * @brief ztimer high-level utility function implementations * * @author Kaspar Schleiser * * @} */ #include #include #include "irq.h" #include "mutex.h" #include "rmutex.h" #include "thread.h" #include "ztimer.h" static void _callback_unlock_mutex(void *arg) { mutex_t *mutex = (mutex_t *)arg; mutex_unlock(mutex); } void ztimer_sleep(ztimer_clock_t *clock, uint32_t duration) { assert(!irq_is_in()); mutex_t mutex = MUTEX_INIT_LOCKED; ztimer_t timer = { .callback = _callback_unlock_mutex, .arg = (void *)&mutex, }; /* correct board / MCU specific overhead */ if (duration > clock->adjust_sleep) { duration -= clock->adjust_sleep; } else { duration = 0; } ztimer_set(clock, &timer, duration); mutex_lock(&mutex); } void ztimer_periodic_wakeup(ztimer_clock_t *clock, uint32_t *last_wakeup, uint32_t period) { unsigned state = irq_disable(); uint32_t now = ztimer_now(clock); uint32_t target = *last_wakeup + period; uint32_t offset = target - now; irq_restore(state); if (offset <= period) { ztimer_sleep(clock, offset); *last_wakeup = target; } else { *last_wakeup = now; } } #ifdef MODULE_CORE_MSG static void _callback_msg(void *arg) { msg_t *msg = (msg_t *)arg; msg_send_int(msg, msg->sender_pid); } static inline void _setup_msg(ztimer_t *timer, msg_t *msg, kernel_pid_t target_pid) { timer->callback = _callback_msg; timer->arg = (void *)msg; /* use sender_pid field to get target_pid into callback function */ msg->sender_pid = target_pid; } void ztimer_set_msg(ztimer_clock_t *clock, ztimer_t *timer, uint32_t offset, msg_t *msg, kernel_pid_t target_pid) { _setup_msg(timer, msg, target_pid); ztimer_set(clock, timer, offset); } int ztimer_msg_receive_timeout(ztimer_clock_t *clock, msg_t *msg, uint32_t timeout) { if (msg_try_receive(msg) == 1) { return 1; } ztimer_t t; msg_t m = { .type = MSG_ZTIMER, .content.ptr = &m }; ztimer_set_msg(clock, &t, timeout, &m, thread_getpid()); msg_receive(msg); ztimer_remove(clock, &t); if (msg->type == MSG_ZTIMER && msg->content.ptr == &m) { /* we hit the timeout */ return -ETIME; } else { return 1; } } #endif /* MODULE_CORE_MSG */ #ifdef MODULE_CORE_THREAD_FLAGS static void _set_timeout_flag_callback(void *arg) { thread_flags_set(arg, THREAD_FLAG_TIMEOUT); } void ztimer_set_timeout_flag(ztimer_clock_t *clock, ztimer_t *t, uint32_t timeout) { t->callback = _set_timeout_flag_callback; t->arg = thread_get_active(); thread_flags_clear(THREAD_FLAG_TIMEOUT); ztimer_set(clock, t, timeout); } #endif static void _callback_wakeup(void *arg) { thread_wakeup((kernel_pid_t)((intptr_t)arg)); } void ztimer_set_wakeup(ztimer_clock_t *clock, ztimer_t *timer, uint32_t offset, kernel_pid_t pid) { ztimer_remove(clock, timer); timer->callback = _callback_wakeup; timer->arg = (void *)((intptr_t)pid); ztimer_set(clock, timer, offset); } static void timeout_cb(void *arg) { mutex_cancel(arg); } int ztimer_mutex_lock_timeout(ztimer_clock_t *clock, mutex_t *mutex, uint32_t timeout) { if (mutex_trylock(mutex)) { return 0; } mutex_cancel_t mc = mutex_cancel_init(mutex); ztimer_t t = { .callback = timeout_cb, .arg = &mc }; ztimer_set(clock, &t, timeout); if (mutex_lock_cancelable(&mc)) { return -ECANCELED; } ztimer_remove(clock, &t); return 0; } int ztimer_rmutex_lock_timeout(ztimer_clock_t *clock, rmutex_t *rmutex, uint32_t timeout) { if (rmutex_trylock(rmutex)) { return 0; } if (ztimer_mutex_lock_timeout(clock, &rmutex->mutex, timeout) == 0) { atomic_store_explicit(&rmutex->owner, thread_getpid(), memory_order_relaxed); rmutex->refcount++; return 0; } return -ECANCELED; }