/* * Copyright (C) 2017 Dan Evans * Copyright (C) 2017 Travis Griggs * Copyright (C) 2017 Dylan Laduranty * * This file is subject to the terms and conditions of the GNU Lesser * General Public License v2.1. See the file LICENSE in the top level * directory for more details. */ /** * @ingroup cpu_sam0_common * @ingroup drivers_periph_adc * @{ * * @file * @brief Low-level ADC driver implementation * * @} */ #include #include "cpu.h" #include "periph/gpio.h" #include "periph/adc.h" #include "periph_conf.h" #include "macros/utils.h" #include "mutex.h" #define ENABLE_DEBUG 0 #include "debug.h" #ifndef ADC_GCLK_SRC #define ADC_GCLK_SRC SAM0_GCLK_MAIN #endif #ifndef ADC_GAIN_FACTOR_DEFAULT #define ADC_GAIN_FACTOR_DEFAULT (0) #endif #ifndef ADC_NEG_INPUT #define ADC_NEG_INPUT (0) #endif /* Prototypes */ static void _adc_poweroff(Adc *dev); static void _setup_clock(Adc *dev); static void _setup_calibration(Adc *dev); static int _adc_configure(Adc *dev, adc_res_t res); static mutex_t _lock = MUTEX_INIT; static inline void _wait_syncbusy(Adc *dev) { #ifdef ADC_STATUS_SYNCBUSY while (dev->STATUS.reg & ADC_STATUS_SYNCBUSY) {} #else /* Ignore the ADC SYNCBUSY.SWTRIG status * The ADC SYNCBUSY.SWTRIG gets stuck to '1' after wake-up from Standby Sleep mode. * SAMD5x/SAME5x errata: DS80000748 (page 10) */ while (dev->SYNCBUSY.reg & ~ADC_SYNCBUSY_SWTRIG) {} #endif } static void _adc_poweroff(Adc *dev) { _wait_syncbusy(dev); /* Disable */ dev->CTRLA.reg &= ~ADC_CTRLA_ENABLE; _wait_syncbusy(dev); /* Disable bandgap */ #ifdef SYSCTRL_VREF_BGOUTEN if (ADC_REF_DEFAULT == ADC_REFCTRL_REFSEL_INT1V) { SYSCTRL->VREF.reg &= ~SYSCTRL_VREF_BGOUTEN; } #else if (ADC_REF_DEFAULT == ADC_REFCTRL_REFSEL_INTREF) { SUPC->VREF.reg &= ~SUPC_VREF_VREFOE; } #endif } static void _setup_clock(Adc *dev) { /* Enable gclk in case we are the only user */ sam0_gclk_enable(ADC_GCLK_SRC); #ifdef PM_APBCMASK_ADC /* Power On */ PM->APBCMASK.reg |= PM_APBCMASK_ADC; /* GCLK Setup */ GCLK->CLKCTRL.reg = GCLK_CLKCTRL_CLKEN | GCLK_CLKCTRL_GEN(ADC_GCLK_SRC) | GCLK_CLKCTRL_ID(ADC_GCLK_ID); /* Configure prescaler */ dev->CTRLB.reg = ADC_PRESCALER; #else /* Power on */ #ifdef MCLK_APBCMASK_ADC MCLK->APBCMASK.reg |= MCLK_APBCMASK_ADC; #else #ifdef MCLK_APBDMASK_ADC0 if (dev == ADC0) { MCLK->APBDMASK.reg |= MCLK_APBDMASK_ADC0; } else { MCLK->APBDMASK.reg |= MCLK_APBDMASK_ADC1; } #else MCLK->APBDMASK.reg |= MCLK_APBDMASK_ADC; #endif #endif #ifdef ADC0_GCLK_ID /* GCLK Setup */ if (dev == ADC0) { GCLK->PCHCTRL[ADC0_GCLK_ID].reg = GCLK_PCHCTRL_CHEN | GCLK_PCHCTRL_GEN(ADC_GCLK_SRC); } else { GCLK->PCHCTRL[ADC1_GCLK_ID].reg = GCLK_PCHCTRL_CHEN | GCLK_PCHCTRL_GEN(ADC_GCLK_SRC); } /* Configure prescaler */ dev->CTRLA.reg = ADC_PRESCALER; #else /* GCLK Setup */ GCLK->PCHCTRL[ADC_GCLK_ID].reg = GCLK_PCHCTRL_CHEN | GCLK_PCHCTRL_GEN(ADC_GCLK_SRC); /* Configure prescaler */ dev->CTRLB.reg = ADC_PRESCALER; #endif #endif } static void _setup_calibration(Adc *dev) { #ifdef ADC_CALIB_BIAS_CAL /* Load the fixed device calibration constants */ dev->CALIB.reg = ADC_CALIB_BIAS_CAL((*(uint32_t*)ADC_FUSES_BIASCAL_ADDR >> ADC_FUSES_BIASCAL_Pos)) | ADC_CALIB_LINEARITY_CAL((*(uint64_t*)ADC_FUSES_LINEARITY_0_ADDR >> ADC_FUSES_LINEARITY_0_Pos)); #else /* Set default calibration from NVM */ #ifdef ADC0_FUSES_BIASCOMP_ADDR if (dev == ADC0) { dev->CALIB.reg = ADC0_FUSES_BIASCOMP((*(uint32_t*)ADC0_FUSES_BIASCOMP_ADDR)) >> ADC_CALIB_BIASCOMP_Pos | ADC0_FUSES_BIASREFBUF((*(uint32_t*)ADC0_FUSES_BIASREFBUF_ADDR) >> ADC0_FUSES_BIASREFBUF_Pos); } else { dev->CALIB.reg = ADC1_FUSES_BIASCOMP((*(uint32_t*)ADC1_FUSES_BIASCOMP_ADDR)) >> ADC_CALIB_BIASCOMP_Pos | ADC1_FUSES_BIASREFBUF((*(uint32_t*)ADC1_FUSES_BIASREFBUF_ADDR) >> ADC1_FUSES_BIASREFBUF_Pos); } #else dev->CALIB.reg = ADC_FUSES_BIASCOMP((*(uint32_t*)ADC_FUSES_BIASCOMP_ADDR)) >> ADC_CALIB_BIASCOMP_Pos | ADC_FUSES_BIASREFBUF((*(uint32_t*)ADC_FUSES_BIASREFBUF_ADDR) >> ADC_FUSES_BIASREFBUF_Pos); #endif #endif } static int _adc_configure(Adc *dev, adc_res_t res) { if ((res == ADC_RES_6BIT) || (res == ADC_RES_14BIT)) { return -1; } _adc_poweroff(dev); if (dev->CTRLA.reg & ADC_CTRLA_SWRST || dev->CTRLA.reg & ADC_CTRLA_ENABLE ) { DEBUG("adc: not ready\n"); return -1; } _setup_clock(dev); _setup_calibration(dev); /* Set ADC resolution */ #ifdef ADC_CTRLC_RESSEL /* Reset resolution bits in CTRLC */ uint32_t ctrlc = dev->CTRLC.reg; dev->CTRLC.reg = ((ctrlc & ~ADC_CTRLC_RESSEL_Msk) | ADC_CTRLC_RESSEL(res)); #else /* Reset resolution bits in CTRLB */ uint32_t ctrlb = dev->CTRLB.reg; dev->CTRLB.reg = ((ctrlb & ~ADC_CTRLB_RESSEL_Msk) | ADC_CTRLB_RESSEL(res)); #endif /* Set Voltage Reference */ dev->REFCTRL.reg = ADC_REF_DEFAULT; /* Disable all interrupts */ dev->INTENCLR.reg = 0xFF; #ifdef SYSCTRL_VREF_BGOUTEN /* Enable bandgap if VREF is internal 1V */ if (ADC_REF_DEFAULT == ADC_REFCTRL_REFSEL_INT1V) { SYSCTRL->VREF.reg |= SYSCTRL_VREF_BGOUTEN; } #else /* Enable bandgap if necessary */ if (ADC_REF_DEFAULT == ADC_REFCTRL_REFSEL_INTREF) { SUPC->VREF.reg |= SUPC_VREF_VREFOE; } #endif #ifdef ADC_REFCTRL_REFSEL_AREFA if (ADC_REF_DEFAULT == ADC_REFCTRL_REFSEL_AREFA) { gpio_init_mux(ADC_REFSEL_AREFA_PIN, GPIO_MUX_B); } #endif #ifdef ADC_REFCTRL_REFSEL_AREFB if (ADC_REF_DEFAULT == ADC_REFCTRL_REFSEL_AREFB) { gpio_init_mux(ADC_REFSEL_AREFB_PIN, GPIO_MUX_B); } #endif #ifdef ADC_REFCTRL_REFSEL_AREFC if (ADC_REF_DEFAULT == ADC_REFCTRL_REFSEL_AREFC) { gpio_init_mux(ADC_REFSEL_AREFC_PIN, GPIO_MUX_B); } #endif if ((res & 0x3) == 1) { dev->AVGCTRL.reg = ADC_AVGCTRL_SAMPLENUM(res >> 2); } else { dev->AVGCTRL.reg = 0; } /* Enable ADC Module */ dev->CTRLA.reg |= ADC_CTRLA_ENABLE; _wait_syncbusy(dev); return 0; } int adc_init(adc_t line) { if (line >= ADC_NUMOF) { DEBUG("adc: line arg not applicable\n"); return -1; } #ifdef ADC0 const uint8_t adc = adc_channels[line].dev == ADC1 ? 1 : 0; #else const uint8_t adc = 0; #endif mutex_lock(&_lock); uint8_t muxpos = (adc_channels[line].inputctrl & ADC_INPUTCTRL_MUXPOS_Msk) >> ADC_INPUTCTRL_MUXPOS_Pos; uint8_t muxneg = (adc_channels[line].inputctrl & ADC_INPUTCTRL_MUXNEG_Msk) >> ADC_INPUTCTRL_MUXNEG_Pos; /* configure positive input pin */ if (muxpos < 0x18) { assert(muxpos < ARRAY_SIZE(sam0_adc_pins[adc])); gpio_init(sam0_adc_pins[adc][muxpos], GPIO_IN); gpio_init_mux(sam0_adc_pins[adc][muxpos], GPIO_MUX_B); } /* configure negative input pin */ if (adc_channels[line].inputctrl & ADC_INPUTCTRL_DIFFMODE) { assert(muxneg < ARRAY_SIZE(sam0_adc_pins[adc])); gpio_init(sam0_adc_pins[adc][muxneg], GPIO_IN); gpio_init_mux(sam0_adc_pins[adc][muxneg], GPIO_MUX_B); } mutex_unlock(&_lock); return 0; } static Adc *_dev(adc_t line) { /* The SAMD5x/SAME5x family has two ADCs: ADC0 and ADC1. */ #ifdef ADC0 return adc_channels[line].dev; #else (void)line; return ADC; #endif } static Adc *_adc(uint8_t dev) { /* The SAMD5x/SAME5x family has two ADCs: ADC0 and ADC1. */ #ifdef ADC0 switch (dev) { case 0: return ADC0; case 1: return ADC1; default: return NULL; } #else (void)dev; return ADC; #endif } static int32_t _sample(adc_t line) { Adc *dev = _dev(line); bool diffmode = adc_channels[line].inputctrl & ADC_INPUTCTRL_DIFFMODE; dev->INPUTCTRL.reg = ADC_GAIN_FACTOR_DEFAULT | adc_channels[line].inputctrl | (diffmode ? 0 : ADC_NEG_INPUT); #ifdef ADC_CTRLB_DIFFMODE if (diffmode) { dev->CTRLB.reg |= ADC_CTRLB_DIFFMODE; } else { dev->CTRLB.reg &= ~ADC_CTRLB_DIFFMODE; } #endif _wait_syncbusy(dev); /* Start the conversion */ dev->SWTRIG.reg = ADC_SWTRIG_START; /* Wait for the result */ while (!(dev->INTFLAG.reg & ADC_INTFLAG_RESRDY)) {} uint16_t sample = dev->RESULT.reg; int result; /* in differential mode we lose one bit for the sign */ if (diffmode) { result = 2 * (int16_t)sample; } else { result = sample; } return result; } static uint8_t _shift_from_res(adc_res_t res) { /* 16 bit mode is implemented as oversampling */ if ((res & 0x3) == 1) { /* ADC does automatic right shifts beyond 16 samples */ return 4 - MIN(4, res >> 2); } return 0; } static void _get_adcs(bool *adc0, bool *adc1) { #ifndef ADC1 *adc0 = true; *adc1 = false; return; #else *adc0 = false; *adc1 = false; for (unsigned i = 0; i < ADC_NUMOF; ++i) { if (adc_channels[i].dev == ADC0) { *adc0 = true; } else if (adc_channels[i].dev == ADC1) { *adc1 = true; } } #endif } static uint8_t _shift; void adc_continuous_begin(adc_res_t res) { bool adc0, adc1; _get_adcs(&adc0, &adc1); mutex_lock(&_lock); if (adc0) { _adc_configure(_adc(0), res); } if (adc1) { _adc_configure(_adc(1), res); } _shift = _shift_from_res(res); } int32_t adc_continuous_sample(adc_t line) { assert(line < ADC_NUMOF); assert(mutex_trylock(&_lock) == 0); return _sample(line) << _shift; } void adc_continuous_stop(void) { bool adc0, adc1; _get_adcs(&adc0, &adc1); if (adc0) { _adc_poweroff(_adc(0)); } if (adc1) { _adc_poweroff(_adc(1)); } mutex_unlock(&_lock); } int32_t adc_sample(adc_t line, adc_res_t res) { if (line >= ADC_NUMOF) { DEBUG("adc: line arg not applicable\n"); return -1; } mutex_lock(&_lock); Adc *dev = _dev(line); if (_adc_configure(dev, res) != 0) { DEBUG("adc: configuration failed\n"); mutex_unlock(&_lock); return -1; } int val = _sample(line) << _shift_from_res(res); _adc_poweroff(dev); mutex_unlock(&_lock); return val; }