/* * Copyright (C) 2014 PHYTEC Messtechnik GmbH * 2017 Freie Universität Berlin * * This file is subject to the terms and conditions of the GNU Lesser * General Public License v2.1. See the file LICENSE in the top level * directory for more details. * */ /** * @ingroup drivers_hdc1000 * @{ * * @file * @brief Driver for the TI HDC1000 Humidity and Temperature Sensor. * * @author Johann Fischer * @author Hauke Petersen * * @} */ #include #include "assert.h" #include "xtimer.h" #include "periph/i2c.h" #include "hdc1000.h" #define ENABLE_DEBUG (0) #include "debug.h" static int16_t temp_cached, hum_cached; static uint32_t last_read_time; int hdc1000_init(hdc1000_t *dev, const hdc1000_params_t *params) { uint8_t reg[2]; uint16_t tmp; /* write device descriptor */ memcpy(&dev->p, params, sizeof(hdc1000_params_t)); /* try if we can interact with the device by reading its manufacturer ID */ i2c_acquire(dev->p.i2c); if (i2c_read_regs(dev->p.i2c, dev->p.addr, HDC1000_MANUFACTURER_ID, reg, 2, 0) < 0) { i2c_release(dev->p.i2c); return HDC1000_NOBUS; } tmp = ((uint16_t)reg[0] << 8) | reg[1]; if (tmp != HDC1000_MID_VALUE) { i2c_release(dev->p.i2c); return HDC1000_NODEV; } /* set resolution for both sensors and sequence mode */ tmp = (HDC1000_SEQ_MOD | dev->p.res); reg[0] = (tmp >> 8); reg[1] = tmp; if (i2c_write_regs(dev->p.i2c, dev->p.addr, HDC1000_CONFIG, reg, 2, 0) < 0) { i2c_release(dev->p.i2c); return HDC1000_NOBUS; } i2c_release(dev->p.i2c); /* initial read for caching operation */ if (hdc1000_read(dev, &temp_cached, &hum_cached) != HDC1000_OK) { return HDC1000_BUSERR; } last_read_time = xtimer_now_usec(); /* all set */ return HDC1000_OK; } int hdc1000_trigger_conversion(const hdc1000_t *dev) { int status = HDC1000_OK; assert(dev); i2c_acquire(dev->p.i2c); /* Trigger the measurements by executing a write access * to the address 0x00 (HDC1000_TEMPERATURE). * Conversion Time is 6.50ms for each value for 14 bit resolution. */ if (i2c_write_byte(dev->p.i2c, dev->p.addr, HDC1000_TEMPERATURE, 0) < 0) { status = HDC1000_BUSERR; } i2c_release(dev->p.i2c); return status; } int hdc1000_get_results(const hdc1000_t *dev, int16_t *temp, int16_t *hum) { int status = HDC1000_OK; assert(dev); uint8_t buf[4]; /* first we read the RAW results from the device */ i2c_acquire(dev->p.i2c); if (i2c_read_bytes(dev->p.i2c, dev->p.addr, buf, 4, 0) < 0) { status = HDC1000_BUSERR; } i2c_release(dev->p.i2c); if (status == HDC1000_OK) { /* if all ok, we convert the values to their physical representation */ if (temp) { uint16_t traw = ((uint16_t)buf[0] << 8) | buf[1]; *temp = (int16_t)((((int32_t)traw * 16500) >> 16) - 4000); } if (hum) { uint16_t hraw = ((uint16_t)buf[2] << 8) | buf[3]; *hum = (int16_t)(((int32_t)hraw * 10000) >> 16); } } return status; } int hdc1000_read(const hdc1000_t *dev, int16_t *temp, int16_t *hum) { if (hdc1000_trigger_conversion(dev) != HDC1000_OK) { return HDC1000_BUSERR; } xtimer_usleep(HDC1000_CONVERSION_TIME); return hdc1000_get_results(dev, temp, hum); } int hdc1000_read_cached(const hdc1000_t *dev, int16_t *temp, int16_t *hum) { uint32_t now = xtimer_now_usec(); /* check if readings are outdated */ if (now - last_read_time > dev->p.renew_interval) { /* update last_read_time */ if (hdc1000_read(dev, &temp_cached, &hum_cached) != HDC1000_OK) { return HDC1000_BUSERR; } last_read_time = now; } if (temp) { *temp = temp_cached; } if (hum) { *hum = hum_cached; } return HDC1000_OK; }