/* * Copyright (C) 2014 Freie Universität Berlin * * This file is subject to the terms and conditions of the GNU Lesser General * Public License v2.1. See the file LICENSE in the top level directory for more * details. */ /** * @ingroup cpu_stm32f0 * @{ * * @file * @brief Low-level GPIO driver implementation * * @author Peter Kietzmann * @author Hauke Petersen * * @} */ #include "cpu.h" #include "board.h" #include "periph/spi.h" #include "periph_conf.h" #include "thread.h" #include "sched.h" #define ENABLE_DEBUG (0) #include "debug.h" /* guard file in case no SPI device is defined */ #if SPI_NUMOF /** * @brief unified interrupt handler to be shared between SPI devices * * @param[in] spi Pointer to the devices base register * @param[in] dev The device that triggered the interrupt */ static inline void irq_handler(SPI_TypeDef *spi, spi_t dev); /** * @brief structure that defines the state for an SPI device */ typedef struct { char (*cb)(char data); } spi_state_t; /** * @brief array with one field for each possible SPI device */ static spi_state_t spi_config[SPI_NUMOF]; int spi_init_master(spi_t dev, spi_conf_t conf, spi_speed_t speed) { SPI_TypeDef *spi = 0; GPIO_TypeDef *port = 0; int pin[3]; /* 3 pins: sck, miso, mosi */ int af; /* power on the SPI device */ spi_poweron(dev); switch (dev) { #if SPI_0_EN case SPI_0: spi = SPI_0_DEV; port = SPI_0_PORT; pin[0] = SPI_0_PIN_SCK; pin[1] = SPI_0_PIN_MISO; pin[2] = SPI_0_PIN_MOSI; af = SPI_0_PIN_AF; SPI_0_PORT_CLKEN(); break; #endif #if SPI_1_EN case SPI_1: spi = SPI_1_DEV; port = SPI_1_PORT; pin[0] = SPI_1_PIN_SCK; pin[1] = SPI_1_PIN_MISO; pin[2] = SPI_1_PIN_MOSI; af = SPI_1_PIN_AF; SPI_0_PORT_CLKEN(); break; #endif } /* configure pins for their correct alternate function */ for (int i = 0; i < 3; i++) { port->MODER &= ~(3 << (pin[i] * 2)); port->MODER |= (2 << (pin[i] * 2)); int hl = (pin[i] < 8) ? 0 : 1; port->AFR[hl] &= (0xf << ((pin[i] - (hl * 8)) * 4)); port->AFR[hl] |= (af << ((pin[i] - (hl * 8)) * 4)); } /* reset SPI configuration registers */ spi->CR1 = 0; spi->CR2 = 0; spi->I2SCFGR = 0; /* this makes sure SPI mode is selected */ /* configure bus clock speed */ switch (speed) { case SPI_SPEED_100KHZ: spi->CR1 |= (7 << 3); /* actual clock: 187.5KHz (lowest possible) */ break; case SPI_SPEED_400KHZ: spi->CR1 |= (6 << 3); /* actual clock: 375KHz */ break; case SPI_SPEED_1MHZ: spi->CR1 |= (4 << 3); /* actual clock: 1.5MHz */ break; case SPI_SPEED_5MHZ: spi->CR1 |= (2 << 3); /* actual clock: 6MHz */ break; case SPI_SPEED_10MHZ: spi->CR1 |= (1 << 3); /* actual clock 12MHz */ } /* select clock polarity and clock phase */ spi->CR1 |= conf; /* select master mode */ spi->CR1 |= SPI_CR1_MSTR; /* the NSS (chip select) is managed purely by software */ spi->CR1 |= SPI_CR1_SSM | SPI_CR1_SSI; /* set data-size to 8-bit */ spi->CR2 |= (0x7 << 8); /* set FIFO threshold to set RXNE when 8 bit are received */ spi->CR2 |= SPI_CR2_FRXTH; /* enable the SPI device */ spi->CR1 |= SPI_CR1_SPE; return 0; } int spi_init_slave(spi_t dev, spi_conf_t conf, char (*cb)(char data)) { SPI_TypeDef *spi = 0; GPIO_TypeDef *port = 0; int pin[3]; /* 3 pins: sck, miso, mosi */ int af; /* enable the SPI modules clock */ spi_poweron(dev); switch (dev) { #if SPI_0_EN case SPI_0: spi = SPI_0_DEV; port = SPI_0_PORT; pin[0] = SPI_0_PIN_SCK; pin[1] = SPI_0_PIN_MISO; pin[2] = SPI_0_PIN_MOSI; af = SPI_0_PIN_AF; SPI_0_PORT_CLKEN(); NVIC_SetPriority(SPI_0_IRQ, SPI_IRQ_PRIO); NVIC_EnableIRQ(SPI_0_IRQ); break; #endif #if SPI_1_EN case SPI_1: spi = SPI_1_DEV; port = SPI_1_PORT; pin[0] = SPI_1_PIN_SCK; pin[1] = SPI_1_PIN_MISO; pin[2] = SPI_1_PIN_MOSI; af = SPI_1_PIN_AF; SPI_1_PORT_CLKEN(); NVIC_SetPriority(SPI_1_IRQ, SPI_IRQ_PRIO); NVIC_EnableIRQ(SPI_1_IRQ); break; #endif } /* set callback */ spi_config[dev].cb = cb; /* configure pins for their correct alternate function */ for (int i = 0; i < 3; i++) { port->MODER &= ~(3 << (pin[i] * 2)); port->MODER |= (2 << (pin[i] * 2)); int hl = (pin[i] < 8) ? 0 : 1; port->AFR[hl] &= (0xf << ((pin[i] - (hl * 8)) * 4)); port->AFR[hl] |= (af << ((pin[i] - (hl * 8)) * 4)); } /* reset SPI configuration registers */ spi->CR1 = 0; spi->CR2 = 0; spi->I2SCFGR = 0; /* this makes sure SPI mode is selected */ /* select clock polarity and clock phase */ spi->CR1 |= conf; /* the NSS (chip select) is managed by software and NSS is low (slave enabled) */ spi->CR1 |= SPI_CR1_SSM; /* set data-size to 8-bit */ spi->CR2 |= (0x7 << 8); /* set FIFO threshold to set RXNE when 8 bit are received */ spi->CR2 |= SPI_CR2_FRXTH; /* enable interrupt for arriving data: 'receive register no empty' and errors */ spi->CR2 |= SPI_CR2_RXNEIE | SPI_CR2_ERRIE; /* enable the SPI device */ spi->CR1 |= SPI_CR1_SPE; return 0; } int spi_transfer_byte(spi_t dev, char out, char *in) { char tmp; SPI_TypeDef *spi = 0; switch (dev) { #if SPI_0_EN case SPI_0: spi = SPI_0_DEV; break; #endif #if SPI_1_EN case SPI_1: spi = SPI_1_DEV; break; #endif } /* wait for an eventually previous byte to be readily transferred */ while(!(spi->SR & SPI_SR_TXE)); /* put next byte into the output register */ *((volatile uint8_t *)(&spi->DR)) = (uint8_t)out; /* wait until the current byte was successfully transferred */ while(!(spi->SR & SPI_SR_RXNE) ); /* read response byte to reset flags */ tmp = *((volatile uint8_t *)(&spi->DR)); /* 'return' response byte if wished for */ if (in) { *in = tmp; } return 1; } int spi_transfer_bytes(spi_t dev, char *out, char *in, unsigned int length) { char res; for (int i = 0; i < length; i++) { DEBUG("Ready for byte %i\n", i); if (out) { DEBUG("Send out with real data: %c\n", out[i]); spi_transfer_byte(dev, out[i], &res); } else { DEBUG("Send byte with zero data\n"); spi_transfer_byte(dev, 0, &res); } if (in) { DEBUG("Got byte: %c\n", res); in[i] = res; } } return length; } int spi_transfer_reg(spi_t dev, uint8_t reg, char out, char *in) { spi_transfer_byte(dev, reg, 0); return spi_transfer_byte(dev, out, in); } int spi_transfer_regs(spi_t dev, uint8_t reg, char *out, char *in, unsigned int length) { spi_transfer_byte(dev, reg, 0); return spi_transfer_bytes(dev, out, in, length); } void spi_transmission_begin(spi_t dev, char reset_val) { switch (dev) { #if SPI_0_EN case SPI_0: *((volatile uint8_t *)(&SPI_0_DEV->DR)) = (uint8_t)reset_val; break; #endif #if SPI_1_EN case SPI_1: *((volatile uint8_t *)(&SPI_1_DEV->DR)) = (uint8_t)reset_val; break; #endif } } void spi_poweron(spi_t dev) { switch (dev) { #if SPI_0_EN case SPI_0: SPI_0_CLKEN(); break; #endif #if SPI_1_EN case SPI_1: SPI_1_CLKEN(); break; #endif } } void spi_poweroff(spi_t dev) { switch (dev) { #if SPI_0_EN case SPI_0: while (SPI_0_DEV->SR & SPI_SR_BSY); SPI_0_CLKDIS(); break; #endif #if SPI_1_EN case SPI_1: while (SPI_1_DEV->SR & SPI_SR_BSY); SPI_1_CLKDIS(); break; #endif } } static inline void irq_handler(SPI_TypeDef *spi, spi_t dev) { char data; /* call owner when new byte was receive (asserts SPI is in slave mode) */ if (spi->SR & SPI_SR_RXNE) { /* read received byte from data register */ data = *((volatile uint8_t *)(&spi->DR)); /* call callback for receiving the answer of the received byte */ //data = spi_config[dev].cb(data); /* set answer byte to be transferred next */ *((volatile uint8_t *)(&spi->DR)) = (uint8_t)data; } if (sched_context_switch_request) { thread_yield(); } } #if SPI_0_EN __attribute__((naked)) void SPI_0_ISR(void) { ISR_ENTER(); LD4_TOGGLE; irq_handler(SPI_0_DEV, SPI_0); LD4_TOGGLE; ISR_EXIT(); } #endif #if SPI_1_EN __attribute__((naked)) void SPI_1_ISR(void) { ISR_ENTER(); irq_handler(SPI_1_DEV, SPI_1); ISR_EXIT(); } #endif #endif /* SPI_NUMOF */