/* * Copyright (C) 2017 Freie Universität Berlin * * This file is subject to the terms and conditions of the GNU Lesser * General Public License v2.1. See the file LICENSE in the top level * directory for more details. */ /** * @ingroup cpu_stm32 * @ingroup drivers_periph_rtt * @{ * * @file * @brief RTT implementation using LPTIM1 * * @author Hauke Petersen * * @} */ #include "cpu.h" #include "irq.h" #include "periph/rtt.h" #include "stmclk.h" /* this driver is only valid for STM CPUs that provide LPTIMERs */ #if defined(LPTIM1) /* figure out the used pre-scaler */ #if (RTT_FREQUENCY == 32768) #define PRE (0) #elif (RTT_FREQUENCY == 16384) #define PRE (LPTIM_CFGR_PRESC_0) #elif (RTT_FREQUENCY == 8192) #define PRE (LPTIM_CFGR_PRESC_1) #elif (RTT_FREQUENCY == 4096) #define PRE (LPTIM_CFGR_PRESC_1 | LPTIM_CFGR_PRESC_0) #elif (RTT_FREQUENCY == 2048) #define PRE (LPTIM_CFGR_PRESC_2) #elif (RTT_FREQUENCY == 1024) #define PRE (LPTIM_CFGR_PRESC_2 | LPTIM_CFGR_PRESC_0) #elif (RTT_FREQUENCY == 512) #define PRE (LPTIM_CFGR_PRESC_2 | LPTIM_CFGR_PRESC_1) #elif (RTT_FREQUENCY == 256) #define PRE (LPTIM_CFGR_PRESC) #else #error "RTT config: RTT_FREQUENCY not configured or invalid for your board" #endif #if defined(CPU_FAM_STM32F4) || defined(CPU_FAM_STM32F7) #define CLOCK_SRC_REG RCC->DCKCFGR2 #define CLOCK_SRC_MASK RCC_DCKCFGR2_LPTIM1SEL #if CLOCK_LSE #define CLOCK_SRC_CFG (RCC_DCKCFGR2_LPTIM1SEL_1 | RCC_DCKCFGR2_LPTIM1SEL_0) #else #define CLOCK_SRC_CFG (RCC_DCKCFGR2_LPTIM1SEL_0) #endif #else #define CLOCK_SRC_REG RCC->CCIPR #define CLOCK_SRC_MASK RCC_CCIPR_LPTIM1SEL #if CLOCK_LSE #define CLOCK_SRC_CFG (RCC_CCIPR_LPTIM1SEL_1 | RCC_CCIPR_LPTIM1SEL_0) #else #define CLOCK_SRC_CFG (RCC_CCIPR_LPTIM1SEL_0) #endif #endif #if defined(CPU_FAM_STM32L4) || defined(CPU_FAM_STM32WB) #define IMR_REG IMR2 #define EXTI_IMR_BIT EXTI_IMR2_IM32 #elif defined(CPU_FAM_STM32G4) #define IMR_REG IMR2 #define EXTI_IMR_BIT EXTI_IMR2_IM37 #elif defined(CPU_FAM_STM32L0) #define IMR_REG IMR #define EXTI_IMR_BIT EXTI_IMR_IM29 #else #define IMR_REG IMR #define FTSR_REG FTSR #define RTSR_REG RTSR #define PR_REG PR #define EXTI_FTSR_BIT EXTI_FTSR_TR23 #define EXTI_RTSR_BIT EXTI_RTSR_TR23 #define EXTI_IMR_BIT EXTI_IMR_MR23 #define EXTI_PR_BIT EXTI_PR_PR23 #endif /* allocate memory for overflow and alarm callbacks + args */ static rtt_cb_t ovf_cb = NULL; static void *ovf_arg; static rtt_cb_t to_cb = NULL; static void *to_arg; void rtt_init(void) { stmclk_enable_lfclk(); /* power on the selected LPTIMER */ rtt_poweron(); /* stop the timer and reset configuration */ LPTIM1->CR = 0; /* select low speed clock (LSI or LSE) */ CLOCK_SRC_REG &= ~(CLOCK_SRC_MASK); CLOCK_SRC_REG |= CLOCK_SRC_CFG; /* set configuration: prescale factor and external clock (LSI or LSE) */ LPTIM1->CFGR = PRE; /* enable overflow and compare interrupts */ LPTIM1->IER = (LPTIM_IER_ARRMIE | LPTIM_IER_CMPMIE); /* configure the EXTI channel, as RTT interrupts are routed through it. * Needs to be configured to trigger on rising edges. */ EXTI->IMR_REG |= EXTI_IMR_BIT; #if !defined(CPU_FAM_STM32L4) && !defined(CPU_FAM_STM32L0) && \ !defined(CPU_FAM_STM32WB) && !defined(CPU_FAM_STM32G4) EXTI->FTSR_REG &= ~(EXTI_FTSR_BIT); EXTI->RTSR_REG |= EXTI_RTSR_BIT; EXTI->PR_REG = EXTI_PR_BIT; #endif NVIC_EnableIRQ(LPTIM1_IRQn); /* enable timer */ LPTIM1->CR = LPTIM_CR_ENABLE; /* set auto-reload value (timer needs to be enabled for this) */ LPTIM1->ICR = LPTIM_ICR_ARROKCF; LPTIM1->ARR = RTT_MAX_VALUE; while (!(LPTIM1->ISR & LPTIM_ISR_ARROK)) {} /* start the timer */ LPTIM1->CR |= LPTIM_CR_CNTSTRT; } uint32_t rtt_get_counter(void) { uint32_t cnt; do { cnt = LPTIM1->CNT; } while (cnt != LPTIM1->CNT); return cnt; } void rtt_set_overflow_cb(rtt_cb_t cb, void *arg) { assert(cb); unsigned is = irq_disable(); ovf_cb = cb; ovf_arg = arg; irq_restore(is); } void rtt_clear_overflow_cb(void) { ovf_cb = NULL; } void rtt_set_alarm(uint32_t alarm, rtt_cb_t cb, void *arg) { assert(cb && !(alarm & ~RTT_MAX_VALUE)); unsigned is = irq_disable(); LPTIM1->ICR = LPTIM_ICR_CMPOKCF; to_cb = cb; to_arg = arg; LPTIM1->CMP = (uint16_t)alarm; while (!(LPTIM1->ISR & LPTIM_ISR_CMPOK)) {} irq_restore(is); } void rtt_clear_alarm(void) { to_cb = NULL; } void rtt_poweron(void) { #ifdef RCC_APB1ENR1_LPTIM1EN periph_clk_en(APB1, RCC_APB1ENR1_LPTIM1EN); #else periph_clk_en(APB1, RCC_APB1ENR_LPTIM1EN); #endif } void rtt_poweroff(void) { #ifdef RCC_APB1ENR1_LPTIM1EN periph_clk_dis(APB1, RCC_APB1ENR1_LPTIM1EN); #else periph_clk_dis(APB1, RCC_APB1ENR_LPTIM1EN); #endif } void isr_lptim1(void) { if (LPTIM1->ISR & LPTIM_ISR_CMPM) { if (to_cb) { /* 'consume' the callback (as it might be set again in the cb) */ rtt_cb_t tmp = to_cb; to_cb = NULL; tmp(to_arg); } } if (LPTIM1->ISR & LPTIM_ISR_ARRM) { if (ovf_cb) { ovf_cb(ovf_arg); } } LPTIM1->ICR = (LPTIM_ICR_ARRMCF | LPTIM_ICR_CMPMCF); #if !defined(CPU_FAM_STM32L4) && !defined(CPU_FAM_STM32L0) && \ !defined(CPU_FAM_STM32WB) && !defined(CPU_FAM_STM32G4) EXTI->PR_REG = EXTI_PR_BIT; /* only clear the associated bit */ #endif cortexm_isr_end(); } #endif /* LPTIM1 */