/* * Copyright (C) 2018 Inria * 2023 Gunar Schorcht * * This file is subject to the terms and conditions of the GNU Lesser * General Public License v2.1. See the file LICENSE in the top level * directory for more details. */ /** * @ingroup boards_stm32l496g-disco * @{ * * @file * @brief Peripheral MCU configuration for the STM32L496G-DISCO board * * @author Alexandre Abadie * @author Gunar Schorcht */ #ifndef PERIPH_CONF_H #define PERIPH_CONF_H /* Add specific clock configuration (HSE, LSE) for this board here */ #ifndef CONFIG_BOARD_HAS_LSE #define CONFIG_BOARD_HAS_LSE 1 #endif #include "periph_cpu.h" #include "clk_conf.h" #include "cfg_rtt_default.h" #include "cfg_usb_otg_fs.h" #include "lcd_fmc.h" #ifdef __cplusplus extern "C" { #endif /** * @name DMA streams configuration * @{ */ static const dma_conf_t dma_config[] = { { .stream = 1 }, /* DMA1 Channel 2 - SPI1_RX */ { .stream = 2 }, /* DMA1 Channel 3 - SPI1_TX */ { .stream = 3 }, /* DMA1 Channel 4 - SPI2_RX / USART1_TX */ { .stream = 4 }, /* DMA1 Channel 5 - SPI2_TX */ { .stream = 6 }, /* DMA1 Channel 7 - USART2_TX */ { .stream = 13 }, /* DMA2 Channel 6 - LPUART1_TX */ { .stream = 11 }, /* DMA2 Channel 4 - SDMMC1 */ }; #define DMA_0_ISR isr_dma1_channel2 #define DMA_1_ISR isr_dma1_channel3 #define DMA_2_ISR isr_dma1_channel4 #define DMA_3_ISR isr_dma1_channel5 #define DMA_4_ISR isr_dma1_channel7 #define DMA_5_ISR isr_dma2_channel6 #define DMA_6_ISR isr_dma2_channel4 #define DMA_NUMOF ARRAY_SIZE(dma_config) /** @} */ /** * @name ADC configuration * * Note that we do not configure all ADC channels, and not in the STM32L496AG * order. Instead, we define 6 ADC channels for the Arduino header pins * A0-A5, one channel for V_REFINT and one channel that is used for the * STMod+ header pin STMOD+_ADC or the DAC1 output if `periph_dac` is used. * * The pin assignment can be found in board's user manual in Table 15, page 26 * (Arduino compatible connectors) and Table 26, page 35 (32L496GDISCOVERY * Discovery board I/O assignment). These tables are showing pin assignments and * information about ADC - a text similar to `ADC[X]_IN[Y]`, where: \n * `[X]` - describes used device - indexed from 0, * for example `ADC3_IN13` is device 2, \n * `[Y]` - describes used channel - indexed from 1, * for example `ADC3_IN13` is channel 13 * * Channels shared by multiple ADCs are referred to as `ADC[XXX]_IN[Y]`. * `ADC12_IN13` means for example that channel 13 can be used either with ADC1 * or with ADC2. * * Output from internal reference voltage V_REFINT is connected to ADC1 * channel 0. * * The V_REF+ pin is not connected to an external reference voltage on the * board by default. Instead the the VREFBUF must be used (`VREFBUF_ENABLE=1`). * The output voltage of VREF is around 2.048 V in this case. * * If an external reference voltage is used as V_REF+, either by soldering * R18 to use V_DDA as reference voltage or by using the AVVD pin of the * Arduino connector by closing the solder bridge SB2, the VREFBUF must not * be enabled by defining `VREFBUF_ENABLE=0`. * * @{ */ static const adc_conf_t adc_config[] = { { .pin = GPIO_PIN(PORT_C, 4), .dev = 0, .chan = 13 }, /* A0, ADC12_IN13 */ { .pin = GPIO_PIN(PORT_C, 1), .dev = 0, .chan = 2 }, /* A1, ADC123_IN2 */ { .pin = GPIO_PIN(PORT_C, 3), .dev = 0, .chan = 4 }, /* A2, ADC123_IN4 */ { .pin = GPIO_PIN(PORT_F, 10), .dev = 2, .chan = 13 }, /* A3, ADC3_IN13 */ { .pin = GPIO_PIN(PORT_A, 1), .dev = 0, .chan = 6 }, /* A4, ADC12_IN6, SB26 closed */ { .pin = GPIO_PIN(PORT_C, 0), .dev = 1, .chan = 13 }, /* A5, ADC12_IN13, SB28 closed */ { .pin = GPIO_UNDEF, .dev = 0, .chan = 0 }, /* V_REFINT, ADC1_IN0 */ { .pin = GPIO_UNDEF, .dev = 0, .chan = 18 }, /* V_BAT, ADC1_IN18 */ #ifndef MODULE_PERIPH_DAC { .pin = GPIO_PIN(PORT_A, 4), .dev = 0, .chan = 9 }, /* STMOD+_ADC, ADC12_IN9 */ #else { .pin = GPIO_UNDEF, .dev = 1, .chan = 17 }, /* DAC1, ADC2_IN17 */ #endif }; /** * @brief Number of ADC devices */ #define ADC_NUMOF ARRAY_SIZE(adc_config) /** * @brief V_BAT ADC line */ #define VBAT_ADC ADC_LINE(7) /** * @brief V_REFINT ADC line */ #define VREFINT_ADC ADC_LINE(6) /** * @brief Enable VREFBUF as V_REF+ * * If an external reference voltage is used as V_REF+, either by soldering * R18 to use V_DDA as reference voltage or by using the AVVD pin of the * Arduino connector by closing the solder bridge SB2, the VREFBUF must not * be enabled by defining `VREFBUF_ENABLE=0`. */ #ifndef VREFBUF_ENABLE #define VREFBUF_ENABLE (1) #endif /** @} */ /** * @name DAC configuration * * The V_REF+ pin is not connected to an external reference voltage on the * board by default. Instead the the VREFBUF must be used (`VREFBUF_ENABLE=1`). * The output voltage of VREF is around 2.048 V in this case. * * @{ */ static const dac_conf_t dac_config[] = { { GPIO_PIN(PORT_A, 4), .chan = 0 }, /* STMod+_ADC pin */ #ifndef MODULE_PERIPH_SPI { GPIO_PIN(PORT_A, 5), .chan = 1 }, /* Arduino D13, conflicts with SPI_DEV(0) */ #endif }; /** * @brief Number of DACs */ #define DAC_NUMOF ARRAY_SIZE(dac_config) /** @} */ /** * @name FMC configuration * @{ */ /** * @brief FMC controller configuration */ static const fmc_conf_t fmc_config = { .bus = AHB3, .rcc_mask = RCC_AHB3ENR_FMCEN, #if MODULE_PERIPH_FMC_NOR_SRAM .ne1_pin = { .pin = GPIO_PIN(PORT_D, 7), .af = GPIO_AF12, }, /* LCD_NE signal, subbank 1 */ .ne2_pin = { .pin = GPIO_PIN(PORT_G, 9), .af = GPIO_AF12, }, /* PSRAM_NE signal, subbank 2 */ .noe_pin = { .pin = GPIO_PIN(PORT_D, 4), .af = GPIO_AF12, }, /* PSRAM/LCD_OE signal (OE) */ .nwe_pin = { .pin = GPIO_PIN(PORT_D, 5), .af = GPIO_AF12, }, /* PSRAM/LCD_WE signal (WE) */ .addr = { { .pin = GPIO_PIN(PORT_F, 0), .af = GPIO_AF12, }, /* PSRAM_A0 signal */ { .pin = GPIO_PIN(PORT_F, 1), .af = GPIO_AF12, }, /* PSRAM_A1 signal */ { .pin = GPIO_PIN(PORT_F, 2), .af = GPIO_AF12, }, /* PSRAM_A2 signal */ { .pin = GPIO_PIN(PORT_F, 3), .af = GPIO_AF12, }, /* PSRAM_A3 signal */ { .pin = GPIO_PIN(PORT_F, 4), .af = GPIO_AF12, }, /* PSRAM_A4 signal */ { .pin = GPIO_PIN(PORT_F, 5), .af = GPIO_AF12, }, /* PSRAM_A5 signal */ { .pin = GPIO_PIN(PORT_F, 12), .af = GPIO_AF12, }, /* PSRAM_A6 signal */ { .pin = GPIO_PIN(PORT_F, 13), .af = GPIO_AF12, }, /* PSRAM_A7 signal */ { .pin = GPIO_PIN(PORT_F, 14), .af = GPIO_AF12, }, /* PSRAM_A8 signal */ { .pin = GPIO_PIN(PORT_F, 15), .af = GPIO_AF12, }, /* PSRAM_A9 signal */ { .pin = GPIO_PIN(PORT_G, 0), .af = GPIO_AF12, }, /* PSRAM_A10 signal */ { .pin = GPIO_PIN(PORT_G, 1), .af = GPIO_AF12, }, /* PSRAM_A11 signal */ { .pin = GPIO_PIN(PORT_G, 2), .af = GPIO_AF12, }, /* PSRAM_A12 signal */ { .pin = GPIO_PIN(PORT_G, 3), .af = GPIO_AF12, }, /* PSRAM_A13 signal */ { .pin = GPIO_PIN(PORT_G, 4), .af = GPIO_AF12, }, /* PSRAM_A14 signal */ { .pin = GPIO_PIN(PORT_G, 5), .af = GPIO_AF12, }, /* PSRAM_A15 signal */ { .pin = GPIO_PIN(PORT_D, 11), .af = GPIO_AF12, }, /* PSRAM_A16 signal */ { .pin = GPIO_PIN(PORT_D, 12), .af = GPIO_AF12, }, /* PSRAM_A17 signal */ { .pin = GPIO_PIN(PORT_D, 13), .af = GPIO_AF12, }, /* PSRAM_A18 / LCD_RS signal */ }, #endif .data = { { .pin = GPIO_PIN(PORT_D, 14), .af = GPIO_AF12, }, /* PSRAM_D0 / LCD_D0 signal */ { .pin = GPIO_PIN(PORT_D, 15), .af = GPIO_AF12, }, /* PSRAM_D1 / LCD_D1 signal */ { .pin = GPIO_PIN(PORT_D, 0), .af = GPIO_AF12, }, /* PSRAM_D2 / LCD_D2 signal */ { .pin = GPIO_PIN(PORT_D, 1), .af = GPIO_AF12, }, /* PSRAM_D3 / LCD_D3 signal */ { .pin = GPIO_PIN(PORT_E, 7), .af = GPIO_AF12, }, /* PSRAM_D4 / LCD_D4 signal */ { .pin = GPIO_PIN(PORT_E, 8), .af = GPIO_AF12, }, /* PSRAM_D5 / LCD_D5 signal */ { .pin = GPIO_PIN(PORT_E, 9), .af = GPIO_AF12, }, /* PSRAM_D6 / LCD_D6 signal */ { .pin = GPIO_PIN(PORT_E, 10), .af = GPIO_AF12, }, /* PSRAM_D7 / LCD_D7 signal */ #if MODULE_PERIPH_FMC_16BIT { .pin = GPIO_PIN(PORT_E, 11), .af = GPIO_AF12, }, /* PSRAM_D8 / LCD_D8 signal */ { .pin = GPIO_PIN(PORT_E, 12), .af = GPIO_AF12, }, /* PSRAM_D9 / LCD_D9 signal */ { .pin = GPIO_PIN(PORT_E, 13), .af = GPIO_AF12, }, /* PSRAM_D10 / LCD_D10 signal */ { .pin = GPIO_PIN(PORT_E, 14), .af = GPIO_AF12, }, /* PSRAM_D11 / LCD_D11 signal */ { .pin = GPIO_PIN(PORT_E, 15), .af = GPIO_AF12, }, /* PSRAM_D12 / LCD_D12 signal */ { .pin = GPIO_PIN(PORT_D, 8), .af = GPIO_AF12, }, /* PSRAM_D13 / LCD_D13 signal */ { .pin = GPIO_PIN(PORT_D, 9), .af = GPIO_AF12, }, /* PSRAM_D14 / LCD_D14 signal */ { .pin = GPIO_PIN(PORT_D, 10), .af = GPIO_AF12, }, /* PSRAM_D15 / LCD_D15 signal */ #endif }, .nbl0_pin = { .pin = GPIO_PIN(PORT_E, 0), .af = GPIO_AF12, }, /* PSRAM_NBL0 signal (LB) */ .nbl1_pin = { .pin = GPIO_PIN(PORT_E, 1), .af = GPIO_AF12, }, /* PSRAM_NBL1 signal (UB) */ }; /** * @brief FMC Bank configuration * * The board has a PSRAM IS66WV51216EBLL-70BLI with 8 MBit on-board. * It is organized in 512K x 16 bits and connected to bank 1, subbank 2 * at address 0x64000000. * * The LCD display of the board is connected to bank 1, subbank1 * at address 0x60000000. */ static const fmc_bank_conf_t fmc_bank_config[] = { /* bank 1, subbank 2 is used for PSRAM with asynchronuous * access in Mode 1, i.e. write timings are not used */ { .bank = FMC_BANK_1, .mem_type = FMC_SRAM, .data_width = FMC_BUS_WIDTH_16BIT, .address = 0x64000000, /* Bank 1, subbank 2 is mapped to 0x64000000 */ .size = MiB(1), /* Size in Mbyte, 512K x 16 bit */ .nor_sram = { .sub_bank = 2, .ext_mode = false, /* Mode 1 used, no separate w_timing */ /* timings for IS66WV51216EBLL-70BLI */ .r_timing = { .addr_setup = 6, /* t_AA = 70 ns (6 HCLKs a 12.5 ns) */ .data_setup = 2, /* t_SD = 30 ns (3 HCLKs a 12.5 ns) */ .bus_turnaround = 1, }, /* 1 HCLK a 12.5 ns */ }, }, /* bank 1, subbank 1 is used for LCD with asynchronuous * access in Mode 1, i.e. write timings are not used */ { .bank = FMC_BANK_1, .mem_type = FMC_SRAM, .data_width = FMC_BUS_WIDTH_16BIT, .address = 0x60000000, /* Bank 1, subbank 1 is mapped to 0x60000000 */ .size = 2, /* 1 word for command @ 0x60000000 and 1 word for data @ 0x60080000 */ .nor_sram = { .sub_bank = 1, .ext_mode = false, /* Mode 1 used, no separate w_timing */ /* timing requirements for ST7789H2: - t_AST min 0 ns (Address setup time) - t_DST min 10 ns (Data setup time) - t_WRL min 15 ns (WE LOW time) - t_WRH min 15 ns (WE HIGH time) - t_WRC min 66 ns (WE cycle time) */ .r_timing = { .addr_setup = 1, /* t_AST = 12 ns (1 HCLKs a 12.5 ns) */ .data_setup = 3, /* t_DST = 37 ns (3 HCLKs a 12.5 ns) */ .bus_turnaround = 2, }, /* t_WRH = 25 ns (2 HCLKs a 12.5 ns) */ }, }, }; /** * @brief Number of configured FMC banks */ #define FMC_BANK_NUMOF ARRAY_SIZE(fmc_bank_config) /** * @brief Descriptors of FMC banks used for LCDs */ static const lcd_fmc_desc_t lcd_fmc_desc[] = { { .bank = FMC_BANK_CONFIG(1), /* second bank (fmc_bank_config[1]) is used */ .cmd_offset = 0x0, /* address 0x60000000 (offset 0x00000) used for commands */ .data_offset = 0x80000, /* address 0x60080000 (offset 0x80000) used for data */ } }; /** * @brief Number of LCDs using FMC banks * * Because it is used by the preprocessor it has to be a number. * The @ref ARRAY_SIZE can't be used here. */ #define LCD_FMC_NUMOF 1 /** @} */ /** * @name I2C configuration * * I2C1 is exposed at Arduino Connector D14/D15 (SDA/SCL) and STmod+ connector * I2C2 is used for MFX (Multi Function eXpander) * @{ */ static const i2c_conf_t i2c_config[] = { { /* Shared between Arduino D14/D15 and STMod+ connector */ .dev = I2C1, .speed = I2C_SPEED_NORMAL, .scl_pin = GPIO_PIN(PORT_B, 8), .sda_pin = GPIO_PIN(PORT_B, 7), .scl_af = GPIO_AF4, .sda_af = GPIO_AF4, .bus = APB1, .rcc_mask = RCC_APB1ENR1_I2C1EN, .rcc_sw_mask = RCC_CCIPR_I2C1SEL_1, /* HSI (16 MHz) */ .irqn = I2C1_ER_IRQn, }, { /* Multi Function eXpander (MFX_x) I2C Address 0x42, * Stereo Codec Cirrus Logic CS42L51-CNZ (CODEC_x), I2C Address 0x4a (AD0 = 0) * Capacitive Touch Panel (CTP_x) FT6206, I2C Address 0x38 * Digital Camera Module (DCMI_x), */ .dev = I2C2, .speed = I2C_SPEED_NORMAL, .scl_pin = GPIO_PIN(PORT_H, 4), .sda_pin = GPIO_PIN(PORT_B, 14), .scl_af = GPIO_AF4, .sda_af = GPIO_AF4, .bus = APB1, .rcc_mask = RCC_APB1ENR1_I2C2EN, .rcc_sw_mask = RCC_CCIPR_I2C2SEL_1, /* HSI (16 MHz) */ .irqn = I2C2_ER_IRQn, }, }; #define I2C_0_ISR isr_i2c1_er #define I2C_1_ISR isr_i2c2_er #define I2C_NUMOF ARRAY_SIZE(i2c_config) /** @} */ /** * @name PWM configuration * * Four PWM channels are defined for the Arduino header pins D3, D5, D6 and D9, * and one for the STMod+ header pin STMOD+_PWM. * * The pin assignment can be found in board's user manual in Table 15, page 26 * (Arduino compatible connectors) and Table 26, page 35 (32L496GDISCOVERY * Discovery board I/O assignment). * * @{ */ static const pwm_conf_t pwm_config[] = { { .dev = TIM8, .rcc_mask = RCC_APB2ENR_TIM8EN, .chan = { { .pin = GPIO_PIN(PORT_H, 15), .cc_chan = 6}, /* D3, TIM8_CH3N */ { .pin = GPIO_PIN(PORT_I, 6), .cc_chan = 1}, /* D6, TIM8_CH2 */ { .pin = GPIO_PIN(PORT_H, 13), .cc_chan = 4}, /* D9, TIM8_CH1N */ { .pin = GPIO_UNDEF, .cc_chan = 0} }, .af = GPIO_AF3, .bus = APB2 }, { .dev = TIM4, .rcc_mask = RCC_APB1ENR1_TIM4EN, .chan = { { .pin = GPIO_PIN(PORT_B, 9), .cc_chan = 3}, /* D5, TIM4_CH4 */ { .pin = GPIO_UNDEF, .cc_chan = 0}, { .pin = GPIO_UNDEF, .cc_chan = 0}, { .pin = GPIO_UNDEF, .cc_chan = 0} }, .af = GPIO_AF2, .bus = APB1 }, { .dev = TIM5, .rcc_mask = RCC_APB1ENR1_TIM5EN, .chan = { { .pin = GPIO_PIN(PORT_A, 0), .cc_chan = 0}, /* STMOD+_PWM, TIM5_CH1 */ { .pin = GPIO_UNDEF, .cc_chan = 0}, { .pin = GPIO_UNDEF, .cc_chan = 0}, { .pin = GPIO_UNDEF, .cc_chan = 0} }, .af = GPIO_AF2, .bus = APB1 }, }; #define PWM_NUMOF ARRAY_SIZE(pwm_config) /** @} */ /** * @name SPI configuration * * @note By default, solder bridges SB6, SB7, SB8 are closed and USART1 is * connected to the Pmod/STMmod+ connector. To use SPI2 on the Pmod/STMmod+ * connector, these jumpers have to be opened and solder bridges SB4, SB5 * and SB9 have to be closed instead. Use the `periph_spi_stmod` module * to use this configuration, disable USART1 and enable SPI2. Otherwise * SPI2 is not available. * * @{ */ static const spi_conf_t spi_config[] = { { /* Arduino connector */ .dev = SPI1, .mosi_pin = GPIO_PIN(PORT_B, 5), .miso_pin = GPIO_PIN(PORT_B, 4), .sclk_pin = GPIO_PIN(PORT_A, 5), .cs_pin = GPIO_PIN(PORT_A, 15), .mosi_af = GPIO_AF5, .miso_af = GPIO_AF5, .sclk_af = GPIO_AF5, .cs_af = GPIO_AF5, .rccmask = RCC_APB2ENR_SPI1EN, .apbbus = APB2, #if IS_USED(MODULE_PERIPH_DMA) .rx_dma = 0, /* DMA1 Channel 2 */ .rx_dma_chan = 1, /* CxS = 1 */ .tx_dma = 1, /* DMA1 Channel 3 */ .tx_dma_chan = 1, /* CxS = 1 */ #endif }, #if IS_USED(MODULE_PERIPH_SPI_STMOD) { /* Pmod/STMod+ connector if solder bridges SB4, SB5, SB9 are closed */ .dev = SPI2, .mosi_pin = GPIO_PIN(PORT_B, 15), .miso_pin = GPIO_PIN(PORT_I, 2), .sclk_pin = GPIO_PIN(PORT_I, 1), .cs_pin = GPIO_PIN(PORT_G, 1), .mosi_af = GPIO_AF5, .miso_af = GPIO_AF5, .sclk_af = GPIO_AF5, .cs_af = GPIO_AF5, .rccmask = RCC_APB1ENR1_SPI2EN, .apbbus = APB1, #if IS_USED(MODULE_PERIPH_DMA) .rx_dma = 2, /* DMA1 Channel 4 */ .rx_dma_chan = 1, /* CxS = 1 */ .tx_dma = 3, /* DMA1 Channel 5 */ .tx_dma_chan = 1, /* CxS = 1 */ #endif }, #endif }; #define SPI_NUMOF ARRAY_SIZE(spi_config) /** @} */ /** * @name Timer configuration * @{ */ static const timer_conf_t timer_config[] = { { .dev = TIM2, .max = 0xffffffff, .rcc_mask = RCC_APB1ENR1_TIM2EN, .bus = APB1, .irqn = TIM2_IRQn }, { .dev = TIM3, .max = 0xffffffff, .rcc_mask = RCC_APB1ENR1_TIM3EN, .bus = APB1, .irqn = TIM3_IRQn }, }; #define TIMER_0_ISR isr_tim2 #define TIMER_1_ISR isr_tim3 #define TIMER_NUMOF ARRAY_SIZE(timer_config) /** @} */ /** * @name UART configuration * * @note By default, solder bridges SB6, SB7, SB8 are closed and USART1 is * connected to the Pmod/STMmod+ connector. In this case the hardware flow * control for USART1 is used. If these solder bridges are open and solder * bridges SB4, SB5 and SB9 are closed instead, SPI2 is connected to the * Pmod/STMmod+ connector and USART1 is not available. * * @{ */ static const uart_conf_t uart_config[] = { { /* Virtual COM Port / ST-Link */ .dev = USART2, .rcc_mask = RCC_APB1ENR1_USART2EN, .rx_pin = GPIO_PIN(PORT_D, 6), .tx_pin = GPIO_PIN(PORT_A, 2), .rx_af = GPIO_AF7, .tx_af = GPIO_AF7, .bus = APB1, .irqn = USART2_IRQn, #if IS_USED(MODULE_PERIPH_UART_HW_FC) .cts_pin = GPIO_UNDEF, /* CTS is not connected */ .rts_pin = GPIO_UNDEF, /* RTS is not connected */ #endif .type = STM32_USART, .clk_src = 0, /* Use APB clock */ #if IS_USED(MODULE_PERIPH_DMA) .dma = 4, /* DMA1 Channel 7 */ .dma_chan = 2, /* CxS = 2 */ #endif }, { /* Arduino connector RX/TX (D0/D1) */ .dev = LPUART1, .rcc_mask = RCC_APB1ENR2_LPUART1EN, .rx_pin = GPIO_PIN(PORT_G, 8), .tx_pin = GPIO_PIN(PORT_G, 7), .rx_af = GPIO_AF8, .tx_af = GPIO_AF8, .bus = APB12, .irqn = LPUART1_IRQn, #if IS_USED(MODULE_PERIPH_UART_HW_FC) .cts_pin = GPIO_UNDEF, /* CTS is not connected */ .rts_pin = GPIO_UNDEF, /* RTS is not connected */ #endif .type = STM32_LPUART, .clk_src = 0, /* Use APB clock */ #if IS_USED(MODULE_PERIPH_DMA) .dma = 5, /* DMA2 Channel 6 */ .dma_chan = 4, /* CxS = 4 */ #endif }, #if !IS_USED(MODULE_PERIPH_SPI_STMOD) { /* Pmod/STMod+ connector if solder bridges SB6, SB7, SB8 are closed (default) */ .dev = USART1, .rcc_mask = RCC_APB2ENR_USART1EN, .rx_pin = GPIO_PIN(PORT_G, 10), .tx_pin = GPIO_PIN(PORT_B, 6), .rx_af = GPIO_AF7, .tx_af = GPIO_AF7, .bus = APB2, .irqn = USART1_IRQn, #if IS_USED(MODULE_PERIPH_UART_HW_FC) .cts_pin = GPIO_PIN(PORT_G, 11), .rts_pin = GPIO_PIN(PORT_G, 12), .cts_af = GPIO_AF7, .rts_af = GPIO_AF7, #endif .type = STM32_USART, .clk_src = 0, /* Use APB clock */ #if IS_USED(MODULE_PERIPH_DMA) .dma = 2, /* DMA1 Channel 4 */ .dma_chan = 2, /* CxS = 2 */ #endif }, #endif /* !IS_USED(MODULE_PERIPH_SPI_STMOD) */ }; #define UART_0_ISR (isr_usart2) #define UART_1_ISR (isr_lpuart1) #define UART_2_ISR (isr_usart1) #define UART_NUMOF ARRAY_SIZE(uart_config) /** @} */ #ifdef __cplusplus } #endif #endif /* PERIPH_CONF_H */ /** @} */