/* * The Clear BSD License * Copyright 2016-2017 NXP * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted (subject to the limitations in the * disclaimer below) provided that the following conditions are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * * Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE * GRANTED BY THIS LICENSE. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT * HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN * IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /** * @ingroup drivers_kw41zrf * @{ * @file * @brief NXP KW41Z XCVR module initialization and calibration of kw41zrf driver * * @author Joakim NohlgÄrd <joakim.nohlgard@eistec.se> * @} */ #include <stdint.h> #include <string.h> #include <errno.h> #include "log.h" #include "bit.h" #include "kw41zrf.h" #include "vendor/XCVR/MKW41Z4/fsl_xcvr.h" #include "vendor/XCVR/MKW41Z4/ifr_radio.h" #define ENABLE_DEBUG 0 #include "debug.h" /* The implementations for these functions are taken from the vendor-provided * XCVR driver from mcuxpresso.nxp.com (KSDK 2.2.0, framework_5.3.5) * The code has been refactored to eliminate a lot of preprocessor * conditionals. */ #define TsettleCal 10 #define DCOC_DAC_BBF_STEP (16) #define RX_DC_EST_SAMPLES (64) #define RX_DC_EST_TOTAL_SAMPLES (2 * (RX_DC_EST_SAMPLES)) /* Macros used by the calibration routine */ #define SAME_SIGN(a, b) (((a) ^ (b)) >= 0) #define ABS(x) ((x) > 0 ? (x) : -(x)) /* dumb spin delay used in the calibration functions */ static void kw41zrf_xcvr_spin(uint32_t time) { time *= 32; /* Time delay is roughly in uSec. */ while (time > 0) { __asm__ volatile ("" ::: "memory"); --time; } } /* Collect RX DC estimation samples */ static void rx_dc_est_samples(int32_t *i_sum, int32_t *q_sum, unsigned nsamples) { /* Wait for TSM to reach the end of warmup (unless you want to capture some samples during DCOC cal phase). */ uint32_t end_of_rx_wu = XCVR_CTRL_XCVR_STATUS_TSM_COUNT( (XCVR_TSM->END_OF_SEQ & XCVR_TSM_END_OF_SEQ_END_OF_RX_WU_MASK) >> XCVR_TSM_END_OF_SEQ_END_OF_RX_WU_SHIFT); while ((XCVR_MISC->XCVR_STATUS & XCVR_CTRL_XCVR_STATUS_TSM_COUNT_MASK) != end_of_rx_wu) {}; int32_t sum_i = 0; int32_t sum_q = 0; /* Read DCOC DC EST register. */ for (unsigned k = 0; k < nsamples; k++) { uint32_t dc_temp = XCVR_RX_DIG->DCOC_DC_EST; int16_t dc_meas_i = (dc_temp & XCVR_RX_DIG_DCOC_DC_EST_DC_EST_I_MASK) >> XCVR_RX_DIG_DCOC_DC_EST_DC_EST_I_SHIFT; dc_meas_i = (int16_t)(dc_meas_i << 4) / 16; /* Sign extend from 12 to 16 bits. */ sum_i += dc_meas_i; int16_t dc_meas_q = (dc_temp & XCVR_RX_DIG_DCOC_DC_EST_DC_EST_Q_MASK) >> XCVR_RX_DIG_DCOC_DC_EST_DC_EST_Q_SHIFT; dc_meas_q = (int16_t)(dc_meas_q << 4) / 16; /* Sign extend from 12 to 16 bits. */ sum_q += dc_meas_q; } *i_sum = sum_i; *q_sum = sum_q; } /* Unsigned integer division, rounded to nearest integer */ static inline uint32_t calc_div_rounded(uint32_t num, uint32_t den) { return (num + (den / 2)) / den; } int kw41zrf_rx_bba_dcoc_dac_trim_DCest(void) { /* Estimate the actual gain by measuring three points and approximating a line */ int status = 0; /* Save register */ uint32_t dcoc_ctrl_0_stack = XCVR_RX_DIG->DCOC_CTRL_0; /* Save state of DCOC_CTRL_0 for later restore */ uint32_t dcoc_ctrl_1_stack = XCVR_RX_DIG->DCOC_CTRL_1; /* Save state of DCOC_CTRL_1 for later restore */ uint32_t rx_dig_ctrl_stack = XCVR_RX_DIG->RX_DIG_CTRL; /* Save state of RX_DIG_CTRL for later restore */ uint32_t agc_ctrl_1_stack = XCVR_RX_DIG->AGC_CTRL_1; /* Save state of RX_DIG_CTRL for later restore */ uint32_t dcoc_cal_gain_state = XCVR_RX_DIG->DCOC_CAL_GAIN; /* Save state of DCOC_CAL_GAIN for later restore */ /* Register config */ /* Ensure AGC, DCOC and RX_DIG_CTRL is in correct mode */ XCVR_RX_DIG->RX_DIG_CTRL = XCVR_RX_DIG->RX_DIG_CTRL & ~(XCVR_RX_DIG_RX_DIG_CTRL_RX_AGC_EN_MASK | /* Turn OFF AGC */ XCVR_RX_DIG_RX_DIG_CTRL_RX_DCOC_CAL_EN_MASK | /* Disable for SW control of DCOC */ XCVR_RX_DIG_RX_DIG_CTRL_RX_DC_RESID_EN_MASK); /* Disable for SW control of DCOC */ XCVR_RX_DIG->AGC_CTRL_1 = XCVR_RX_DIG_AGC_CTRL_1_USER_LNA_GAIN_EN(1) | /* Enable LNA Manual Gain */ XCVR_RX_DIG_AGC_CTRL_1_USER_BBA_GAIN_EN(1) | /* Enable BBA Manual Gain */ XCVR_RX_DIG_AGC_CTRL_1_LNA_USER_GAIN(0x0) | /* Set LNA Manual Gain */ XCVR_RX_DIG_AGC_CTRL_1_BBA_USER_GAIN(0x0); /* Set BBA Manual Gain */ /* DCOC_CTRL_0 @ 4005_C02C -- Define default DCOC DAC settings in manual mode */ XCVR_RX_DIG->DCOC_CTRL_0 = XCVR_RX_DIG->DCOC_CTRL_0 | XCVR_RX_DIG_DCOC_CTRL_0_DCOC_MAN(1) | /* Enable Manual DCOC */ XCVR_RX_DIG_DCOC_CTRL_0_DCOC_CORRECT_SRC(1) | /* Ensure DCOC Tracking is enabled */ XCVR_RX_DIG_DCOC_CTRL_0_DCOC_TRK_EST_OVR(1) | /* Enable DC Estimator */ XCVR_RX_DIG_DCOC_CTRL_0_DCOC_CORRECT_EN(1); /* Ensure DC correction is enabled */ /* Use reset defaults */ uint8_t bbf_dacinit_i = 0x20; uint8_t bbf_dacinit_q = 0x20; uint8_t tza_dacinit_i = 0x80; uint8_t tza_dacinit_q = 0x80; /* Set default DCOC DAC INIT Value */ XCVR_RX_DIG->DCOC_DAC_INIT = XCVR_RX_DIG_DCOC_DAC_INIT_BBA_DCOC_INIT_I(bbf_dacinit_i) | XCVR_RX_DIG_DCOC_DAC_INIT_BBA_DCOC_INIT_Q(bbf_dacinit_q) | XCVR_RX_DIG_DCOC_DAC_INIT_TZA_DCOC_INIT_I(tza_dacinit_i) | XCVR_RX_DIG_DCOC_DAC_INIT_TZA_DCOC_INIT_Q(tza_dacinit_q); /* Store DCOC_DAC_INIT value */ uint32_t dcoc_init_reg_value_dcgain = XCVR_RX_DIG->DCOC_DAC_INIT; kw41zrf_xcvr_spin(TsettleCal * 2); uint32_t meas_sum = 0; /* SWEEP I/Q CHANNEL */ /* BBF NEG STEP */ XCVR_RX_DIG->DCOC_DAC_INIT = XCVR_RX_DIG_DCOC_DAC_INIT_BBA_DCOC_INIT_I(bbf_dacinit_i - DCOC_DAC_BBF_STEP) | XCVR_RX_DIG_DCOC_DAC_INIT_BBA_DCOC_INIT_Q(bbf_dacinit_q - DCOC_DAC_BBF_STEP) | XCVR_RX_DIG_DCOC_DAC_INIT_TZA_DCOC_INIT_I(tza_dacinit_i) | XCVR_RX_DIG_DCOC_DAC_INIT_TZA_DCOC_INIT_Q(tza_dacinit_q); kw41zrf_xcvr_spin(TsettleCal * 4); int32_t dc_meas_im = 0; int32_t dc_meas_qm = 0; rx_dc_est_samples(&dc_meas_im, &dc_meas_qm, RX_DC_EST_SAMPLES); /* BBF POS STEP */ XCVR_RX_DIG->DCOC_DAC_INIT = XCVR_RX_DIG_DCOC_DAC_INIT_BBA_DCOC_INIT_I(bbf_dacinit_i + DCOC_DAC_BBF_STEP) | XCVR_RX_DIG_DCOC_DAC_INIT_BBA_DCOC_INIT_Q(bbf_dacinit_q + DCOC_DAC_BBF_STEP) | XCVR_RX_DIG_DCOC_DAC_INIT_TZA_DCOC_INIT_I(tza_dacinit_i) | XCVR_RX_DIG_DCOC_DAC_INIT_TZA_DCOC_INIT_Q(tza_dacinit_q); kw41zrf_xcvr_spin(TsettleCal * 4); int32_t dc_meas_ip = 0; int32_t dc_meas_qp = 0; rx_dc_est_samples(&dc_meas_ip, &dc_meas_qp, RX_DC_EST_SAMPLES); DEBUG("dc_meas_i- = %" PRId32 "\n", dc_meas_im); DEBUG("dc_meas_q- = %" PRId32 "\n", dc_meas_qm); DEBUG("dc_meas_i+ = %" PRId32 "\n", dc_meas_ip); DEBUG("dc_meas_q+ = %" PRId32 "\n", dc_meas_qp); meas_sum += dc_meas_ip - dc_meas_im; DEBUG("meas_sum = %" PRIu32 "\n", meas_sum); meas_sum += dc_meas_qp - dc_meas_qm; DEBUG("meas_sum = %" PRIu32 "\n", meas_sum); meas_sum /= 2 * DCOC_DAC_BBF_STEP; DEBUG("meas_sum = %" PRIu32 "\n", meas_sum); XCVR_RX_DIG->DCOC_DAC_INIT = dcoc_init_reg_value_dcgain; /* Return DAC setting to initial */ /* Compute the average sampled gain for the measured steps */ /* Calculate BBF DCOC STEPS, RECIPROCALS */ /* meas_sum here is the average gain multiplied by (4 * RX_DC_EST_SAMPLES) */ /* Compute the gain average as a Q6.3 number */ /* rounded result, Q6.3 number */ uint16_t bbf_dcoc_gain_measured = calc_div_rounded(meas_sum, (RX_DC_EST_TOTAL_SAMPLES / (1u << 3))); DEBUG("temp_step = %f\n", (float)meas_sum / RX_DC_EST_TOTAL_SAMPLES); DEBUG("bbf_dcoc_gain_measured = %u\n", (unsigned)bbf_dcoc_gain_measured); /* Check the measured value for validity. Should be in the range: * 250 < bbf_dcoc_gain_measured < 305, according to NXP wireless framework v5.4.3 (MCUXpresso KW36 SDK) */ if ((250 < bbf_dcoc_gain_measured) & (bbf_dcoc_gain_measured < 305)) { /* Compute reciprocal, as Q15 number, but only the 13 lowest bits are programmable */ /* rounded result, ((2**15) / slope) */ uint32_t bbf_dcoc_gain_measured_rcp = calc_div_rounded((1u << 15) * RX_DC_EST_TOTAL_SAMPLES, meas_sum); DEBUG("bbf_dcoc_gain_measured_rcp = %"PRIu32"\n", bbf_dcoc_gain_measured_rcp); uint32_t bbf_dcoc_gain_default = (xcvr_common_config.dcoc_bba_step_init & XCVR_RX_DIG_DCOC_BBA_STEP_BBA_DCOC_STEP_MASK) >> XCVR_RX_DIG_DCOC_BBA_STEP_BBA_DCOC_STEP_SHIFT; /* Rescale all default TZA DCOC gains according to the measured BBF gain, * using (bbf_dcoc_gain_measured / bbf_dcoc_gain_default) as the implicit * scale factor, but rewrite it to use * (meas_sum / (bbf_dcoc_gain_default * RX_DC_EST_TOTAL_SAMPLES / (1u << 3)))) * for better numeric precision */ /* rounded result, Q9.3 number */ bbf_dcoc_gain_default *= (RX_DC_EST_TOTAL_SAMPLES / (1u << 3)); DEBUG("base gain = %u\n", (unsigned)bbf_dcoc_gain_default); /* Make the trims active */ XCVR_RX_DIG->DCOC_BBA_STEP = XCVR_RX_DIG_DCOC_BBA_STEP_BBA_DCOC_STEP(bbf_dcoc_gain_measured) | XCVR_RX_DIG_DCOC_BBA_STEP_BBA_DCOC_STEP_RECIP(bbf_dcoc_gain_measured_rcp); const uint32_t *dcoc_tza_step_config_ptr = &xcvr_common_config.dcoc_tza_step_00_init; /* All tza_step_* configuration registers use sequential memory addresses */ volatile uint32_t *xcvr_rx_dig_dcoc_tza_step_ptr = &XCVR_RX_DIG->DCOC_TZA_STEP_0; for (unsigned k = 0; k <= 10; ++k) { /* Calculate TZA DCOC STEPSIZE & its RECIPROCAL */ uint16_t tza_gain_default = (dcoc_tza_step_config_ptr[k] & XCVR_RX_DIG_DCOC_TZA_STEP_0_DCOC_TZA_STEP_GAIN_0_MASK) >> XCVR_RX_DIG_DCOC_TZA_STEP_0_DCOC_TZA_STEP_GAIN_0_SHIFT; /* Using meas_sum for higher precision */ DEBUG("tza_gain_default[%u] = %u\n", k, (unsigned)tza_gain_default); uint32_t dcoc_step = calc_div_rounded(tza_gain_default * meas_sum, bbf_dcoc_gain_default); uint32_t dcoc_step_rcp = calc_div_rounded((0x8000ul << 3) * bbf_dcoc_gain_default, tza_gain_default * meas_sum); DEBUG("tza_dcoc_step[%u].dcoc_step = %u\n", k, (unsigned)dcoc_step); DEBUG("tza_dcoc_step[%u].dcoc_step_rcp = %u\n", k, (unsigned)dcoc_step_rcp); xcvr_rx_dig_dcoc_tza_step_ptr[k] = XCVR_RX_DIG_DCOC_TZA_STEP_0_DCOC_TZA_STEP_GAIN_0(dcoc_step) | XCVR_RX_DIG_DCOC_TZA_STEP_0_DCOC_TZA_STEP_RCP_0(dcoc_step_rcp) ; } } else { LOG_ERROR("!!! XCVR trim failed: bbf_dcoc_step = %u!\n", (unsigned)bbf_dcoc_gain_measured); status = -EAGAIN; /* Failure */ } /* Restore Registers */ XCVR_RX_DIG->DCOC_CTRL_0 = dcoc_ctrl_0_stack; /* Restore DCOC_CTRL_0 state to prior settings */ XCVR_RX_DIG->DCOC_CTRL_1 = dcoc_ctrl_1_stack; /* Restore DCOC_CTRL_1 state to prior settings */ XCVR_RX_DIG->RX_DIG_CTRL = rx_dig_ctrl_stack; /* Restore RX_DIG_CTRL state to prior settings */ XCVR_RX_DIG->DCOC_CAL_GAIN = dcoc_cal_gain_state; /* Restore DCOC_CAL_GAIN state to prior setting */ XCVR_RX_DIG->AGC_CTRL_1 = agc_ctrl_1_stack; /* Save state of RX_DIG_CTRL for later restore */ return status; } static void kw41zrf_dcoc_dac_init_cal(void) { uint8_t p_tza_dac_i = 0, p_tza_dac_q = 0; uint8_t p_bba_dac_i = 0, p_bba_dac_q = 0; uint8_t i = 0; uint8_t bba_gain = 11; uint8_t TZA_I_OK = 0, TZA_Q_OK = 0, BBA_I_OK = 0, BBA_Q_OK = 0; uint32_t temp; /* Save registers */ uint32_t dcoc_ctrl_0_stack = XCVR_RX_DIG->DCOC_CTRL_0; /* Save state of DCOC_CTRL_0 for later restore */ uint32_t dcoc_ctrl_1_stack = XCVR_RX_DIG->DCOC_CTRL_1; /* Save state of DCOC_CTRL_1 for later restore */ uint32_t rx_dig_ctrl_stack = XCVR_RX_DIG->RX_DIG_CTRL; /* Save state of RX_DIG_CTRL for later restore */ uint32_t agc_ctrl_1_stack = XCVR_RX_DIG->AGC_CTRL_1; /* Save state of RX_DIG_CTRL for later restore */ uint32_t dcoc_cal_gain_state = XCVR_RX_DIG->DCOC_CAL_GAIN; /* Save state of DCOC_CAL_GAIN for later restore */ /* Register config */ /* Ensure AGC, DCOC and RX_DIG_CTRL is in correct mode */ temp = XCVR_RX_DIG->RX_DIG_CTRL; temp &= ~XCVR_RX_DIG_RX_DIG_CTRL_RX_AGC_EN_MASK; /* Turn OFF AGC */ temp &= ~XCVR_RX_DIG_RX_DIG_CTRL_RX_DCOC_CAL_EN_MASK; /* Disable for SW control of DCOC */ temp &= ~XCVR_RX_DIG_RX_DIG_CTRL_RX_DC_RESID_EN_MASK; /* Disable for SW control of DCOC */ XCVR_RX_DIG->RX_DIG_CTRL = temp; XCVR_RX_DIG->AGC_CTRL_1 = XCVR_RX_DIG_AGC_CTRL_1_USER_LNA_GAIN_EN(1) | /* Enable LNA Manual Gain */ XCVR_RX_DIG_AGC_CTRL_1_USER_BBA_GAIN_EN(1) | /* Enable BBA Manual Gain */ XCVR_RX_DIG_AGC_CTRL_1_LNA_USER_GAIN(0x0) | /* Set LNA Manual Gain */ XCVR_RX_DIG_AGC_CTRL_1_BBA_USER_GAIN(0x0); /* Set BBA Manual Gain */ /* DCOC_CTRL_0 @ 4005_C02C -- Define default DCOC DAC settings in manual mode */ temp = XCVR_RX_DIG->DCOC_CTRL_0; temp |= XCVR_RX_DIG_DCOC_CTRL_0_DCOC_MAN(1); /* Enable Manual DCOC */ temp |= XCVR_RX_DIG_DCOC_CTRL_0_DCOC_CORRECT_SRC(1); /* Ensure DCOC Tracking is enabled */ temp |= XCVR_RX_DIG_DCOC_CTRL_0_DCOC_TRK_EST_OVR(1); /* Enable DC Estimator */ temp |= XCVR_RX_DIG_DCOC_CTRL_0_DCOC_CORRECT_EN(1); /* Ensure DC correction is enabled */ XCVR_RX_DIG->DCOC_CTRL_0 = temp; kw41zrf_xcvr_spin(TsettleCal); /* Set default DCOC DAC INIT Value */ /* LNA and BBA DAC Sweep */ uint8_t curr_bba_dac_i = 0x20; uint8_t curr_bba_dac_q = 0x20; uint8_t curr_tza_dac_i = 0x80; uint8_t curr_tza_dac_q = 0x80; /* Perform a first DC measurement to ensure that measurement is not clipping */ XCVR_RX_DIG->DCOC_DAC_INIT = XCVR_RX_DIG_DCOC_DAC_INIT_BBA_DCOC_INIT_I(curr_bba_dac_i) | XCVR_RX_DIG_DCOC_DAC_INIT_BBA_DCOC_INIT_Q(curr_bba_dac_q) | XCVR_RX_DIG_DCOC_DAC_INIT_TZA_DCOC_INIT_I(curr_tza_dac_i) | XCVR_RX_DIG_DCOC_DAC_INIT_TZA_DCOC_INIT_Q(curr_tza_dac_q); int32_t dc_meas_i = 2000, dc_meas_i_p = 2000; int32_t dc_meas_q = 2000, dc_meas_q_p = 2000; do { bba_gain--; /* Set DAC user gain */ XCVR_RX_DIG->AGC_CTRL_1 = XCVR_RX_DIG_AGC_CTRL_1_USER_LNA_GAIN_EN(1) | XCVR_RX_DIG_AGC_CTRL_1_LNA_USER_GAIN(0) | /* 2 */ XCVR_RX_DIG_AGC_CTRL_1_USER_BBA_GAIN_EN(1) | XCVR_RX_DIG_AGC_CTRL_1_BBA_USER_GAIN(bba_gain) ; /* 10 */ kw41zrf_xcvr_spin(TsettleCal * 2); rx_dc_est_samples(&dc_meas_i, &dc_meas_q, RX_DC_EST_SAMPLES); DEBUG("rx i=%d q=%d\n", (int)dc_meas_i, (int)dc_meas_q); dc_meas_i /= RX_DC_EST_SAMPLES; dc_meas_q /= RX_DC_EST_SAMPLES; DEBUG("rx i=%d q=%d\n", (int)dc_meas_i, (int)dc_meas_q); DEBUG("[kw41zrf] bba_gain=%u, meas I=%" PRId32 ", Q=%" PRId32 "\n", (unsigned)bba_gain, dc_meas_i, dc_meas_q); } while ((ABS(dc_meas_i) > 1900) || (ABS(dc_meas_q) > 1900)); for (i = 0; i < 0x0F; i++) { DEBUG("rx i=%d q=%d\n", (int)dc_meas_i, (int)dc_meas_q); /* I channel : */ if (!TZA_I_OK) { if ((i > 0) && (!SAME_SIGN(dc_meas_i, dc_meas_i_p))) { if (ABS(dc_meas_i) > ABS(dc_meas_i_p)) { curr_tza_dac_i = p_tza_dac_i; } TZA_I_OK = 1; } else { p_tza_dac_i = curr_tza_dac_i; if (dc_meas_i > 0) { curr_tza_dac_i--; } else { curr_tza_dac_i++; } } } else if (!BBA_I_OK) { /* Sweep BBA I */ if ((curr_bba_dac_i != 0x20) && (!SAME_SIGN(dc_meas_i, dc_meas_i_p))) { if (ABS(dc_meas_i) > ABS(dc_meas_i_p)) { curr_bba_dac_i = p_bba_dac_i; } BBA_I_OK = 1; } else { p_bba_dac_i = curr_bba_dac_i; if (dc_meas_i > 0) { curr_bba_dac_i--; } else { curr_bba_dac_i++; } } } /* Q channel : */ if (!TZA_Q_OK) { if ((i > 0) && (!SAME_SIGN(dc_meas_q, dc_meas_q_p))) { if (ABS(dc_meas_q) > ABS(dc_meas_q_p)) { curr_tza_dac_q = p_tza_dac_q; } TZA_Q_OK = 1; } else { p_tza_dac_q = curr_tza_dac_q; if (dc_meas_q > 0) { curr_tza_dac_q--; } else { curr_tza_dac_q++; } } } else if (!BBA_Q_OK) { /* Sweep BBA Q */ if ((curr_bba_dac_q != 0x20) && (!SAME_SIGN(dc_meas_q, dc_meas_q_p))) { if (ABS(dc_meas_q) > ABS(dc_meas_q_p)) { curr_bba_dac_q = p_bba_dac_q; } BBA_Q_OK = 1; } else { p_bba_dac_q = curr_bba_dac_q; if (dc_meas_q > 0) { curr_bba_dac_q--; } else { curr_bba_dac_q++; } } } /* DC OK break : */ if (TZA_I_OK && TZA_Q_OK && BBA_I_OK && BBA_Q_OK) { break; } dc_meas_i_p = dc_meas_i; /* Store as previous value */ dc_meas_q_p = dc_meas_q; /* Store as previous value */ DEBUG("curr_bba_dac i=%d q=%d\n", (int)curr_bba_dac_i, (int)curr_bba_dac_q); DEBUG("curr_tza_dac i=%d q=%d\n", (int)curr_tza_dac_i, (int)curr_tza_dac_q); XCVR_RX_DIG->DCOC_DAC_INIT = XCVR_RX_DIG_DCOC_DAC_INIT_BBA_DCOC_INIT_I(curr_bba_dac_i) | XCVR_RX_DIG_DCOC_DAC_INIT_BBA_DCOC_INIT_Q(curr_bba_dac_q) | XCVR_RX_DIG_DCOC_DAC_INIT_TZA_DCOC_INIT_I(curr_tza_dac_i) | XCVR_RX_DIG_DCOC_DAC_INIT_TZA_DCOC_INIT_Q(curr_tza_dac_q); kw41zrf_xcvr_spin(TsettleCal * 2); rx_dc_est_samples(&dc_meas_i, &dc_meas_q, RX_DC_EST_SAMPLES); dc_meas_i /= RX_DC_EST_SAMPLES; dc_meas_q /= RX_DC_EST_SAMPLES; } /* Apply optimized DCOC DAC INIT : */ XCVR_RX_DIG->DCOC_DAC_INIT = XCVR_RX_DIG_DCOC_DAC_INIT_BBA_DCOC_INIT_I(curr_bba_dac_i) | XCVR_RX_DIG_DCOC_DAC_INIT_BBA_DCOC_INIT_Q(curr_bba_dac_q) | XCVR_RX_DIG_DCOC_DAC_INIT_TZA_DCOC_INIT_I(curr_tza_dac_i) | XCVR_RX_DIG_DCOC_DAC_INIT_TZA_DCOC_INIT_Q(curr_tza_dac_q); /* Restore register */ XCVR_RX_DIG->DCOC_CTRL_0 = dcoc_ctrl_0_stack; /* Restore DCOC_CTRL_0 state to prior settings */ XCVR_RX_DIG->DCOC_CTRL_1 = dcoc_ctrl_1_stack; /* Restore DCOC_CTRL_1 state to prior settings */ XCVR_RX_DIG->RX_DIG_CTRL = rx_dig_ctrl_stack; /* Restore RX_DIG_CTRL state to prior settings */ XCVR_RX_DIG->DCOC_CAL_GAIN = dcoc_cal_gain_state; /* Restore DCOC_CAL_GAIN state to prior setting */ XCVR_RX_DIG->AGC_CTRL_1 = agc_ctrl_1_stack; /* Save state of RX_DIG_CTRL for later restore */ } static int kw41zrf_xcvr_configure(kw41zrf_t *dev, const xcvr_common_config_t *com_config, const xcvr_mode_config_t *mode_config, const xcvr_mode_datarate_config_t *mode_datarate_config, const xcvr_datarate_config_t *datarate_config) { (void)dev; int config_status = 0; uint32_t temp; /* Turn on the module clocks before doing anything */ SIM->SCGC5 |= mode_config->scgc5_clock_ena_bits; /* XCVR_ANA configs */ /* Configure PLL Loop Filter */ XCVR_ANA->SY_CTRL_1 &= ~com_config->ana_sy_ctrl1.mask; XCVR_ANA->SY_CTRL_1 |= com_config->ana_sy_ctrl1.init; /* Configure VCO KVM */ XCVR_ANA->SY_CTRL_2 &= ~mode_datarate_config->ana_sy_ctrl2.mask; XCVR_ANA->SY_CTRL_2 |= mode_datarate_config->ana_sy_ctrl2.init; /* Configure analog filter bandwidth */ XCVR_ANA->RX_BBA &= ~mode_datarate_config->ana_rx_bba.mask; XCVR_ANA->RX_BBA |= mode_datarate_config->ana_rx_bba.init; XCVR_ANA->RX_TZA &= ~mode_datarate_config->ana_rx_tza.mask; XCVR_ANA->RX_TZA |= mode_datarate_config->ana_rx_tza.init; temp = XCVR_ANA->TX_DAC_PA; temp &= ~XCVR_ANALOG_TX_DAC_PA_TX_PA_BUMP_VBIAS_MASK; temp |= XCVR_ANALOG_TX_DAC_PA_TX_PA_BUMP_VBIAS(4); XCVR_ANA->TX_DAC_PA = temp; temp = XCVR_ANA->BB_LDO_2; temp &= ~XCVR_ANALOG_BB_LDO_2_BB_LDO_VCOLO_TRIM_MASK; temp |= XCVR_ANALOG_BB_LDO_2_BB_LDO_VCOLO_TRIM(0); XCVR_ANA->BB_LDO_2 = temp; temp = XCVR_ANA->RX_LNA; temp &= ~XCVR_ANALOG_RX_LNA_RX_LNA_BUMP_MASK; temp |= XCVR_ANALOG_RX_LNA_RX_LNA_BUMP(1); XCVR_ANA->RX_LNA = temp; temp = XCVR_ANA->BB_LDO_1; temp &= ~XCVR_ANALOG_BB_LDO_1_BB_LDO_FDBK_TRIM_MASK; temp |= XCVR_ANALOG_BB_LDO_1_BB_LDO_FDBK_TRIM(1); XCVR_ANA->BB_LDO_1 = temp; /* XCVR_MISC configs */ temp = XCVR_MISC->XCVR_CTRL; temp &= ~(mode_config->xcvr_ctrl.mask | XCVR_CTRL_XCVR_CTRL_REF_CLK_FREQ_MASK); temp |= mode_config->xcvr_ctrl.init; if (CLOCK_RADIOXTAL == 26000000ul) { temp |= XCVR_CTRL_XCVR_CTRL_REF_CLK_FREQ(1); } XCVR_MISC->XCVR_CTRL = temp; /* XCVR_PHY configs */ XCVR_PHY->PHY_PRE_REF0 = mode_config->phy_pre_ref0_init; XCVR_PHY->PRE_REF1 = mode_config->phy_pre_ref1_init; XCVR_PHY->PRE_REF2 = mode_config->phy_pre_ref2_init; XCVR_PHY->CFG1 = mode_config->phy_cfg1_init; XCVR_PHY->CFG2 = mode_datarate_config->phy_cfg2_init; XCVR_PHY->EL_CFG = mode_config->phy_el_cfg_init | datarate_config->phy_el_cfg_init; /* EL_WIN_SIZE and EL_INTERVAL are datarate dependent, */ /* XCVR_PLL_DIG configs */ XCVR_PLL_DIG->HPM_BUMP = com_config->pll_hpm_bump; XCVR_PLL_DIG->MOD_CTRL = com_config->pll_mod_ctrl; XCVR_PLL_DIG->CHAN_MAP = com_config->pll_chan_map; XCVR_PLL_DIG->LOCK_DETECT = com_config->pll_lock_detect; XCVR_PLL_DIG->HPM_CTRL = com_config->pll_hpm_ctrl; XCVR_PLL_DIG->HPMCAL_CTRL = com_config->pll_hpmcal_ctrl; XCVR_PLL_DIG->HPM_SDM_RES = com_config->pll_hpm_sdm_res; XCVR_PLL_DIG->LPM_CTRL = com_config->pll_lpm_ctrl; XCVR_PLL_DIG->LPM_SDM_CTRL1 = com_config->pll_lpm_sdm_ctrl1; XCVR_PLL_DIG->DELAY_MATCH = com_config->pll_delay_match; XCVR_PLL_DIG->CTUNE_CTRL = com_config->pll_ctune_ctrl; /* XCVR_RX_DIG configs */ /* Configure RF Aux PLL for proper operation based on external clock frequency */ temp = XCVR_ANA->RX_AUXPLL; temp &= ~XCVR_ANALOG_RX_AUXPLL_VCO_DAC_REF_ADJUST_MASK; if (CLOCK_RADIOXTAL == 26000000ul) { temp |= XCVR_ANALOG_RX_AUXPLL_VCO_DAC_REF_ADJUST(4); } else { temp |= XCVR_ANALOG_RX_AUXPLL_VCO_DAC_REF_ADJUST(7); } XCVR_ANA->RX_AUXPLL = temp; /* Configure RX_DIG_CTRL */ if (CLOCK_RADIOXTAL == 26000000ul) { temp = com_config->rx_dig_ctrl_init | /* Common portion of RX_DIG_CTRL init */ mode_config->rx_dig_ctrl_init_26mhz | /* Mode specific portion of RX_DIG_CTRL init */ datarate_config->rx_dig_ctrl_init_26mhz | /* Datarate specific portion of RX_DIG_CTRL init */ XCVR_RX_DIG_RX_DIG_CTRL_RX_SRC_EN_MASK; /* Always enable the sample rate converter for 26MHz */ } else { temp = com_config->rx_dig_ctrl_init | /* Common portion of RX_DIG_CTRL init */ mode_config->rx_dig_ctrl_init_32mhz | /* Mode specific portion of RX_DIG_CTRL init */ datarate_config->rx_dig_ctrl_init_32mhz | /* Datarate specific portion of RX_DIG_CTRL init */ 0; /* Always disable the sample rate converter for 32MHz */ } temp |= com_config->rx_dig_ctrl_init; /* Common portion of RX_DIG_CTRL init */ XCVR_RX_DIG->RX_DIG_CTRL = temp; /* DCOC_CAL_IIR */ if (CLOCK_RADIOXTAL == 26000000ul) { XCVR_RX_DIG->DCOC_CAL_IIR = datarate_config->dcoc_cal_iir_init_26mhz; } else { XCVR_RX_DIG->DCOC_CAL_IIR = datarate_config->dcoc_cal_iir_init_32mhz; } /* DC_RESID_CTRL */ if (CLOCK_RADIOXTAL == 26000000ul) { XCVR_RX_DIG->DC_RESID_CTRL = com_config->dc_resid_ctrl_init | datarate_config->dc_resid_ctrl_26mhz; } else { XCVR_RX_DIG->DC_RESID_CTRL = com_config->dc_resid_ctrl_init | datarate_config->dc_resid_ctrl_32mhz; } /* DCOC_CTRL_0 & _1 */ if (CLOCK_RADIOXTAL == 26000000ul) { XCVR_RX_DIG->DCOC_CTRL_0 = com_config->dcoc_ctrl_0_init_26mhz | datarate_config->dcoc_ctrl_0_init_26mhz; /* Combine common and datarate specific settings */ XCVR_RX_DIG->DCOC_CTRL_1 = com_config->dcoc_ctrl_1_init | datarate_config->dcoc_ctrl_1_init_26mhz; /* Combine common and datarate specific settings */ /* customize DCOC_CTRL_0 settings for Gen2 GFSK BT=0.5, h=0.32 */ if ((mode_config->radio_mode == ANT_MODE) || (mode_config->radio_mode == GFSK_BT_0p5_h_0p32)) { if (datarate_config->data_rate == DR_1MBPS) /* only apply fix to 1Mbps data rates */ { /* apply the changes to the DCOC_CTRL_0 register XCVR_RX_DIG_DCOC_CTRL_0_DCOC_CORR_DLY & XCVR_RX_DIG_DCOC_CTRL_0_DCOC_CORR_HOLD_TIME */ temp = XCVR_RX_DIG->DCOC_CTRL_0; temp &= ~XCVR_RX_DIG_DCOC_CTRL_0_DCOC_CORR_DLY_MASK | XCVR_RX_DIG_DCOC_CTRL_0_DCOC_CORR_HOLD_TIME_MASK; temp |= XCVR_RX_DIG_DCOC_CTRL_0_DCOC_CORR_DLY(0x10) | XCVR_RX_DIG_DCOC_CTRL_0_DCOC_CORR_HOLD_TIME(0x0C); XCVR_RX_DIG->DCOC_CTRL_0 = temp; } } } else { XCVR_RX_DIG->DCOC_CTRL_0 = com_config->dcoc_ctrl_0_init_32mhz | datarate_config->dcoc_ctrl_0_init_32mhz; /* Combine common and datarate specific settings */ XCVR_RX_DIG->DCOC_CTRL_1 = com_config->dcoc_ctrl_1_init | datarate_config->dcoc_ctrl_1_init_32mhz; /* Combine common and datarate specific settings */ } /* DCOC_CAL_GAIN */ XCVR_RX_DIG->DCOC_CAL_GAIN = com_config->dcoc_cal_gain_init; /* DCOC_CAL_RCP */ XCVR_RX_DIG->DCOC_CAL_RCP = com_config->dcoc_cal_rcp_init; XCVR_RX_DIG->LNA_GAIN_VAL_3_0 = com_config->lna_gain_val_3_0; XCVR_RX_DIG->LNA_GAIN_VAL_7_4 = com_config->lna_gain_val_7_4; XCVR_RX_DIG->LNA_GAIN_VAL_8 = com_config->lna_gain_val_8; XCVR_RX_DIG->BBA_RES_TUNE_VAL_7_0 = com_config->bba_res_tune_val_7_0; XCVR_RX_DIG->BBA_RES_TUNE_VAL_10_8 = com_config->bba_res_tune_val_10_8; /* LNA_GAIN_LIN_VAL */ XCVR_RX_DIG->LNA_GAIN_LIN_VAL_2_0 = com_config->lna_gain_lin_val_2_0_init; XCVR_RX_DIG->LNA_GAIN_LIN_VAL_5_3 = com_config->lna_gain_lin_val_5_3_init; XCVR_RX_DIG->LNA_GAIN_LIN_VAL_8_6 = com_config->lna_gain_lin_val_8_6_init; XCVR_RX_DIG->LNA_GAIN_LIN_VAL_9 = com_config->lna_gain_lin_val_9_init; /* BBA_RES_TUNE_LIN_VAL */ XCVR_RX_DIG->BBA_RES_TUNE_LIN_VAL_3_0 = com_config->bba_res_tune_lin_val_3_0_init; XCVR_RX_DIG->BBA_RES_TUNE_LIN_VAL_7_4 = com_config->bba_res_tune_lin_val_7_4_init; XCVR_RX_DIG->BBA_RES_TUNE_LIN_VAL_10_8 = com_config->bba_res_tune_lin_val_10_8_init; /* BBA_STEP */ XCVR_RX_DIG->DCOC_BBA_STEP = com_config->dcoc_bba_step_init; /* DCOC_TZA_STEP */ XCVR_RX_DIG->DCOC_TZA_STEP_0 = com_config->dcoc_tza_step_00_init; XCVR_RX_DIG->DCOC_TZA_STEP_1 = com_config->dcoc_tza_step_01_init; XCVR_RX_DIG->DCOC_TZA_STEP_2 = com_config->dcoc_tza_step_02_init; XCVR_RX_DIG->DCOC_TZA_STEP_3 = com_config->dcoc_tza_step_03_init; XCVR_RX_DIG->DCOC_TZA_STEP_4 = com_config->dcoc_tza_step_04_init; XCVR_RX_DIG->DCOC_TZA_STEP_5 = com_config->dcoc_tza_step_05_init; XCVR_RX_DIG->DCOC_TZA_STEP_6 = com_config->dcoc_tza_step_06_init; XCVR_RX_DIG->DCOC_TZA_STEP_7 = com_config->dcoc_tza_step_07_init; XCVR_RX_DIG->DCOC_TZA_STEP_8 = com_config->dcoc_tza_step_08_init; XCVR_RX_DIG->DCOC_TZA_STEP_9 = com_config->dcoc_tza_step_09_init; XCVR_RX_DIG->DCOC_TZA_STEP_10 = com_config->dcoc_tza_step_10_init; /* AGC_CTRL_0 .. _3 */ XCVR_RX_DIG->AGC_CTRL_0 = com_config->agc_ctrl_0_init | mode_config->agc_ctrl_0_init; if (CLOCK_RADIOXTAL == 26000000ul) { XCVR_RX_DIG->AGC_CTRL_1 = com_config->agc_ctrl_1_init_26mhz | datarate_config->agc_ctrl_1_init_26mhz; /* Combine common and datarate specific settings */ XCVR_RX_DIG->AGC_CTRL_2 = mode_datarate_config->agc_ctrl_2_init_26mhz; } else { XCVR_RX_DIG->AGC_CTRL_1 = com_config->agc_ctrl_1_init_32mhz | datarate_config->agc_ctrl_1_init_32mhz; /* Combine common and datarate specific settings */ XCVR_RX_DIG->AGC_CTRL_2 = mode_datarate_config->agc_ctrl_2_init_32mhz; } XCVR_RX_DIG->AGC_CTRL_3 = com_config->agc_ctrl_3_init; /* AGC_GAIN_TBL_** */ XCVR_RX_DIG->AGC_GAIN_TBL_03_00 = com_config->agc_gain_tbl_03_00_init; XCVR_RX_DIG->AGC_GAIN_TBL_07_04 = com_config->agc_gain_tbl_07_04_init; XCVR_RX_DIG->AGC_GAIN_TBL_11_08 = com_config->agc_gain_tbl_11_08_init; XCVR_RX_DIG->AGC_GAIN_TBL_15_12 = com_config->agc_gain_tbl_15_12_init; XCVR_RX_DIG->AGC_GAIN_TBL_19_16 = com_config->agc_gain_tbl_19_16_init; XCVR_RX_DIG->AGC_GAIN_TBL_23_20 = com_config->agc_gain_tbl_23_20_init; XCVR_RX_DIG->AGC_GAIN_TBL_26_24 = com_config->agc_gain_tbl_26_24_init; /* RSSI_CTRL_0 */ XCVR_RX_DIG->RSSI_CTRL_0 = com_config->rssi_ctrl_0_init; /* CCA_ED_LQI_0 and _1 */ XCVR_RX_DIG->CCA_ED_LQI_CTRL_0 = com_config->cca_ed_lqi_ctrl_0_init; XCVR_RX_DIG->CCA_ED_LQI_CTRL_1 = com_config->cca_ed_lqi_ctrl_1_init; /* Channel filter coefficients */ if (CLOCK_RADIOXTAL == 26000000ul) { XCVR_RX_DIG->RX_CHF_COEF_0 = mode_datarate_config->rx_chf_coeffs_26mhz.rx_chf_coef_0; XCVR_RX_DIG->RX_CHF_COEF_1 = mode_datarate_config->rx_chf_coeffs_26mhz.rx_chf_coef_1; XCVR_RX_DIG->RX_CHF_COEF_2 = mode_datarate_config->rx_chf_coeffs_26mhz.rx_chf_coef_2; XCVR_RX_DIG->RX_CHF_COEF_3 = mode_datarate_config->rx_chf_coeffs_26mhz.rx_chf_coef_3; XCVR_RX_DIG->RX_CHF_COEF_4 = mode_datarate_config->rx_chf_coeffs_26mhz.rx_chf_coef_4; XCVR_RX_DIG->RX_CHF_COEF_5 = mode_datarate_config->rx_chf_coeffs_26mhz.rx_chf_coef_5; XCVR_RX_DIG->RX_CHF_COEF_6 = mode_datarate_config->rx_chf_coeffs_26mhz.rx_chf_coef_6; XCVR_RX_DIG->RX_CHF_COEF_7 = mode_datarate_config->rx_chf_coeffs_26mhz.rx_chf_coef_7; XCVR_RX_DIG->RX_CHF_COEF_8 = mode_datarate_config->rx_chf_coeffs_26mhz.rx_chf_coef_8; XCVR_RX_DIG->RX_CHF_COEF_9 = mode_datarate_config->rx_chf_coeffs_26mhz.rx_chf_coef_9; XCVR_RX_DIG->RX_CHF_COEF_10 = mode_datarate_config->rx_chf_coeffs_26mhz.rx_chf_coef_10; XCVR_RX_DIG->RX_CHF_COEF_11 = mode_datarate_config->rx_chf_coeffs_26mhz.rx_chf_coef_11; } else { XCVR_RX_DIG->RX_CHF_COEF_0 = mode_datarate_config->rx_chf_coeffs_32mhz.rx_chf_coef_0; XCVR_RX_DIG->RX_CHF_COEF_1 = mode_datarate_config->rx_chf_coeffs_32mhz.rx_chf_coef_1; XCVR_RX_DIG->RX_CHF_COEF_2 = mode_datarate_config->rx_chf_coeffs_32mhz.rx_chf_coef_2; XCVR_RX_DIG->RX_CHF_COEF_3 = mode_datarate_config->rx_chf_coeffs_32mhz.rx_chf_coef_3; XCVR_RX_DIG->RX_CHF_COEF_4 = mode_datarate_config->rx_chf_coeffs_32mhz.rx_chf_coef_4; XCVR_RX_DIG->RX_CHF_COEF_5 = mode_datarate_config->rx_chf_coeffs_32mhz.rx_chf_coef_5; XCVR_RX_DIG->RX_CHF_COEF_6 = mode_datarate_config->rx_chf_coeffs_32mhz.rx_chf_coef_6; XCVR_RX_DIG->RX_CHF_COEF_7 = mode_datarate_config->rx_chf_coeffs_32mhz.rx_chf_coef_7; XCVR_RX_DIG->RX_CHF_COEF_8 = mode_datarate_config->rx_chf_coeffs_32mhz.rx_chf_coef_8; XCVR_RX_DIG->RX_CHF_COEF_9 = mode_datarate_config->rx_chf_coeffs_32mhz.rx_chf_coef_9; XCVR_RX_DIG->RX_CHF_COEF_10 = mode_datarate_config->rx_chf_coeffs_32mhz.rx_chf_coef_10; XCVR_RX_DIG->RX_CHF_COEF_11 = mode_datarate_config->rx_chf_coeffs_32mhz.rx_chf_coef_11; } XCVR_RX_DIG->RX_RCCAL_CTRL0 = mode_datarate_config->rx_rccal_ctrl_0; XCVR_RX_DIG->RX_RCCAL_CTRL1 = mode_datarate_config->rx_rccal_ctrl_1; /* XCVR_TSM configs */ XCVR_TSM->CTRL = com_config->tsm_ctrl; if ((mode_config->radio_mode != ZIGBEE_MODE) && (mode_config->radio_mode != BLE_MODE)) { XCVR_TSM->CTRL &= ~XCVR_TSM_CTRL_DATA_PADDING_EN_MASK; } XCVR_MISC->LPPS_CTRL = com_config->lpps_ctrl_init; /* Register is in XCVR_MISC but grouped with TSM for initialization */ XCVR_TSM->OVRD2 = com_config->tsm_ovrd2_init; /* TSM registers and timings - dependent upon clock frequency */ if (CLOCK_RADIOXTAL == 26000000ul) { XCVR_TSM->END_OF_SEQ = com_config->end_of_seq_init_26mhz; XCVR_TSM->FAST_CTRL2 = com_config->tsm_fast_ctrl2_init_26mhz; XCVR_TSM->RECYCLE_COUNT = com_config->recycle_count_init_26mhz; XCVR_TSM->TIMING14 = com_config->tsm_timing_14_init_26mhz; XCVR_TSM->TIMING16 = com_config->tsm_timing_16_init_26mhz; XCVR_TSM->TIMING25 = com_config->tsm_timing_25_init_26mhz; XCVR_TSM->TIMING27 = com_config->tsm_timing_27_init_26mhz; XCVR_TSM->TIMING28 = com_config->tsm_timing_28_init_26mhz; XCVR_TSM->TIMING29 = com_config->tsm_timing_29_init_26mhz; XCVR_TSM->TIMING30 = com_config->tsm_timing_30_init_26mhz; XCVR_TSM->TIMING31 = com_config->tsm_timing_31_init_26mhz; XCVR_TSM->TIMING32 = com_config->tsm_timing_32_init_26mhz; XCVR_TSM->TIMING33 = com_config->tsm_timing_33_init_26mhz; XCVR_TSM->TIMING36 = com_config->tsm_timing_36_init_26mhz; XCVR_TSM->TIMING37 = com_config->tsm_timing_37_init_26mhz; XCVR_TSM->TIMING39 = com_config->tsm_timing_39_init_26mhz; XCVR_TSM->TIMING40 = com_config->tsm_timing_40_init_26mhz; XCVR_TSM->TIMING41 = com_config->tsm_timing_41_init_26mhz; XCVR_TSM->TIMING52 = com_config->tsm_timing_52_init_26mhz; XCVR_TSM->TIMING54 = com_config->tsm_timing_54_init_26mhz; XCVR_TSM->TIMING55 = com_config->tsm_timing_55_init_26mhz; XCVR_TSM->TIMING56 = com_config->tsm_timing_56_init_26mhz; } else { XCVR_TSM->END_OF_SEQ = com_config->end_of_seq_init_32mhz; XCVR_TSM->FAST_CTRL2 = com_config->tsm_fast_ctrl2_init_32mhz; XCVR_TSM->RECYCLE_COUNT = com_config->recycle_count_init_32mhz; XCVR_TSM->TIMING14 = com_config->tsm_timing_14_init_32mhz; XCVR_TSM->TIMING16 = com_config->tsm_timing_16_init_32mhz; XCVR_TSM->TIMING25 = com_config->tsm_timing_25_init_32mhz; XCVR_TSM->TIMING27 = com_config->tsm_timing_27_init_32mhz; XCVR_TSM->TIMING28 = com_config->tsm_timing_28_init_32mhz; XCVR_TSM->TIMING29 = com_config->tsm_timing_29_init_32mhz; XCVR_TSM->TIMING30 = com_config->tsm_timing_30_init_32mhz; XCVR_TSM->TIMING31 = com_config->tsm_timing_31_init_32mhz; XCVR_TSM->TIMING32 = com_config->tsm_timing_32_init_32mhz; XCVR_TSM->TIMING33 = com_config->tsm_timing_33_init_32mhz; XCVR_TSM->TIMING36 = com_config->tsm_timing_36_init_32mhz; XCVR_TSM->TIMING37 = com_config->tsm_timing_37_init_32mhz; XCVR_TSM->TIMING39 = com_config->tsm_timing_39_init_32mhz; XCVR_TSM->TIMING40 = com_config->tsm_timing_40_init_32mhz; XCVR_TSM->TIMING41 = com_config->tsm_timing_41_init_32mhz; XCVR_TSM->TIMING52 = com_config->tsm_timing_52_init_32mhz; XCVR_TSM->TIMING54 = com_config->tsm_timing_54_init_32mhz; XCVR_TSM->TIMING55 = com_config->tsm_timing_55_init_32mhz; XCVR_TSM->TIMING56 = com_config->tsm_timing_56_init_32mhz; } /* TSM timings independent of clock frequency */ XCVR_TSM->TIMING00 = com_config->tsm_timing_00_init; XCVR_TSM->TIMING01 = com_config->tsm_timing_01_init; XCVR_TSM->TIMING02 = com_config->tsm_timing_02_init; XCVR_TSM->TIMING03 = com_config->tsm_timing_03_init; XCVR_TSM->TIMING04 = com_config->tsm_timing_04_init; XCVR_TSM->TIMING05 = com_config->tsm_timing_05_init; XCVR_TSM->TIMING06 = com_config->tsm_timing_06_init; XCVR_TSM->TIMING07 = com_config->tsm_timing_07_init; XCVR_TSM->TIMING08 = com_config->tsm_timing_08_init; XCVR_TSM->TIMING09 = com_config->tsm_timing_09_init; XCVR_TSM->TIMING10 = com_config->tsm_timing_10_init; XCVR_TSM->TIMING11 = com_config->tsm_timing_11_init; XCVR_TSM->TIMING12 = com_config->tsm_timing_12_init; XCVR_TSM->TIMING13 = com_config->tsm_timing_13_init; XCVR_TSM->TIMING15 = com_config->tsm_timing_15_init; XCVR_TSM->TIMING17 = com_config->tsm_timing_17_init; XCVR_TSM->TIMING18 = com_config->tsm_timing_18_init; XCVR_TSM->TIMING19 = com_config->tsm_timing_19_init; XCVR_TSM->TIMING20 = com_config->tsm_timing_20_init; XCVR_TSM->TIMING21 = com_config->tsm_timing_21_init; XCVR_TSM->TIMING22 = com_config->tsm_timing_22_init; XCVR_TSM->TIMING23 = com_config->tsm_timing_23_init; XCVR_TSM->TIMING24 = com_config->tsm_timing_24_init; XCVR_TSM->TIMING26 = com_config->tsm_timing_26_init; XCVR_TSM->TIMING34 = com_config->tsm_timing_34_init; XCVR_TSM->TIMING35 = com_config->tsm_timing_35_init; XCVR_TSM->TIMING38 = com_config->tsm_timing_38_init; XCVR_TSM->TIMING51 = com_config->tsm_timing_51_init; XCVR_TSM->TIMING53 = com_config->tsm_timing_53_init; XCVR_TSM->TIMING57 = com_config->tsm_timing_57_init; XCVR_TSM->TIMING58 = com_config->tsm_timing_58_init; if (CLOCK_RADIOXTAL == 26000000ul) { XCVR_TSM->END_OF_SEQ = XCVR_TSM_END_OF_SEQ_END_OF_TX_WU(END_OF_TX_WU) | XCVR_TSM_END_OF_SEQ_END_OF_TX_WD(END_OF_TX_WD) | XCVR_TSM_END_OF_SEQ_END_OF_RX_WU(END_OF_RX_WU_26MHZ) | XCVR_TSM_END_OF_SEQ_END_OF_RX_WD(END_OF_RX_WD_26MHZ); } else { XCVR_TSM->END_OF_SEQ = XCVR_TSM_END_OF_SEQ_END_OF_TX_WU(END_OF_TX_WU) | XCVR_TSM_END_OF_SEQ_END_OF_TX_WD(END_OF_TX_WD) | XCVR_TSM_END_OF_SEQ_END_OF_RX_WU(END_OF_RX_WU) | XCVR_TSM_END_OF_SEQ_END_OF_RX_WD(END_OF_RX_WD); } XCVR_TSM->PA_RAMP_TBL0 = com_config->pa_ramp_tbl_0_init; XCVR_TSM->PA_RAMP_TBL1 = com_config->pa_ramp_tbl_1_init; if ((mode_datarate_config->radio_mode == MSK) && ((mode_datarate_config->data_rate == DR_500KBPS) || (mode_datarate_config->data_rate == DR_250KBPS))) { /* Apply a specific value of TX_DIG_EN which assumes no DATA PADDING */ XCVR_TSM->TIMING35 = com_config->tsm_timing_35_init | B0(TX_DIG_EN_ASSERT_MSK500); /* LSbyte is mode specific */ } else { XCVR_TSM->TIMING35 = com_config->tsm_timing_35_init | mode_config->tsm_timing_35_init; /* LSbyte is mode specific, other bytes are common */ } /* XCVR_TX_DIG configs */ if (CLOCK_RADIOXTAL == 26000000ul) { XCVR_TX_DIG->FSK_SCALE = mode_datarate_config->tx_fsk_scale_26mhz; /* Applies only to 802.15.4 & MSK but won't harm other protocols */ XCVR_TX_DIG->GFSK_COEFF1 = mode_config->tx_gfsk_coeff1_26mhz; XCVR_TX_DIG->GFSK_COEFF2 = mode_config->tx_gfsk_coeff2_26mhz; } else { XCVR_TX_DIG->FSK_SCALE = mode_datarate_config->tx_fsk_scale_32mhz; /* Applies only to 802.15.4 & MSK but won't harm other protocols */ XCVR_TX_DIG->GFSK_COEFF1 = mode_config->tx_gfsk_coeff1_32mhz; XCVR_TX_DIG->GFSK_COEFF2 = mode_config->tx_gfsk_coeff2_32mhz; } XCVR_TX_DIG->CTRL = com_config->tx_ctrl; XCVR_TX_DIG->DATA_PADDING = com_config->tx_data_padding; XCVR_TX_DIG->DFT_PATTERN = com_config->tx_dft_pattern; XCVR_TX_DIG->RF_DFT_BIST_1 = com_config->rf_dft_bist_1; XCVR_TX_DIG->RF_DFT_BIST_2 = com_config->rf_dft_bist_2; XCVR_TX_DIG->GFSK_CTRL = mode_config->tx_gfsk_ctrl; /* Force receiver warmup */ bit_set32(&XCVR_TSM->CTRL, XCVR_TSM_CTRL_FORCE_RX_EN_SHIFT); /* Wait for TSM to reach the end of warmup (unless you want to capture some samples during DCOC cal phase) */ uint32_t end_of_rx_wu = XCVR_CTRL_XCVR_STATUS_TSM_COUNT( (XCVR_TSM->END_OF_SEQ & XCVR_TSM_END_OF_SEQ_END_OF_RX_WU_MASK) >> XCVR_TSM_END_OF_SEQ_END_OF_RX_WU_SHIFT); while ((XCVR_MISC->XCVR_STATUS & XCVR_CTRL_XCVR_STATUS_TSM_COUNT_MASK) != end_of_rx_wu) {}; int res = kw41zrf_rx_bba_dcoc_dac_trim_DCest(); if (res < 0) { config_status = res; } //~ DCOC_DAC_INIT_Cal(0); kw41zrf_dcoc_dac_init_cal(); /* Force receiver warmdown */ bit_clear32(&XCVR_TSM->CTRL, XCVR_TSM_CTRL_FORCE_RX_EN_SHIFT); return config_status; } int kw41zrf_xcvr_init(kw41zrf_t *dev) { (void) dev; uint8_t radio_id = ((RSIM->MISC & RSIM_MISC_RADIO_VERSION_MASK) >> RSIM_MISC_RADIO_VERSION_SHIFT); switch (radio_id) { case 0x3: /* KW41/31/21 v1 */ case 0xb: /* KW41/31/21 v1.1 */ break; default: return -ENODEV; } RSIM->RF_OSC_CTRL = (RSIM->RF_OSC_CTRL & ~(RSIM_RF_OSC_CTRL_RADIO_EXT_OSC_OVRD_MASK)) | /* Set EXT_OSC_OVRD value to zero */ RSIM_RF_OSC_CTRL_RADIO_EXT_OSC_OVRD_EN_MASK; /* Enable over-ride with zero value */ bit_set32(&SIM->SCGC5, SIM_SCGC5_PHYDIG_SHIFT); /* Enable PHY clock gate */ /* Load IFR trim values */ IFR_SW_TRIM_TBL_ENTRY_T sw_trim_tbl[] = { {TRIM_STATUS, 0, 0}, /*< Fetch the trim status word if available.*/ {TRIM_VERSION, 0, 0} /*< Fetch the trim version number if available.*/ }; handle_ifr(&sw_trim_tbl[0], ARRAY_SIZE(sw_trim_tbl)); DEBUG("[kw41zrf] sw_trim_tbl:\n"); for (unsigned k = 0; k < ARRAY_SIZE(sw_trim_tbl); ++k) { DEBUG("[kw41zrf] [%u] id=0x%04x ", k, (unsigned)sw_trim_tbl[k].trim_id); if (sw_trim_tbl[k].trim_id == TRIM_STATUS) { DEBUG("(TRIM_STATUS) "); } else if (sw_trim_tbl[k].trim_id == TRIM_VERSION) { DEBUG("(TRIM_VERSION) "); } DEBUG("value=%" PRIu32 ", valid=%u\n", sw_trim_tbl[k].trim_value, (unsigned)sw_trim_tbl[k].valid); } /* We only use 802.15.4 mode in this driver */ xcvrStatus_t status = kw41zrf_xcvr_configure(dev, &xcvr_common_config, &zgbe_mode_config, &xcvr_ZIGBEE_500kbps_config, &xcvr_802_15_4_500kbps_config); if (status != gXcvrSuccess_c) { return -EIO; } return 0; }