/* * Copyright (C) 2018 Kaspar Schleiser * 2015 Freie Universität Berlin * * This file is subject to the terms and conditions of the GNU Lesser * General Public License v2.1. See the file LICENSE in the top level * directory for more details. */ /** * @ingroup drivers_at86rf2xx * @{ * * @file * @brief Netdev adaption for the AT86RF2xx drivers * * @author Thomas Eichinger * @author Hauke Petersen * @author Kévin Roussel * @author Martine Lenders * @author Kaspar Schleiser * @author Josua Arndt * * @} */ #include #include #include #include "iolist.h" #include "net/eui64.h" #include "net/ieee802154.h" #include "net/netdev.h" #include "net/netdev/ieee802154.h" #include "at86rf2xx.h" #include "at86rf2xx_netdev.h" #include "at86rf2xx_internal.h" #include "at86rf2xx_registers.h" #if IS_USED(MODULE_AT86RF2XX_AES_SPI) #include "at86rf2xx_aes.h" #endif #define ENABLE_DEBUG 0 #include "debug.h" static int _send(netdev_t *netdev, const iolist_t *iolist); static int _recv(netdev_t *netdev, void *buf, size_t len, void *info); static int _init(netdev_t *netdev); static void _isr(netdev_t *netdev); static int _get(netdev_t *netdev, netopt_t opt, void *val, size_t max_len); static int _set(netdev_t *netdev, netopt_t opt, const void *val, size_t len); const netdev_driver_t at86rf2xx_driver = { .send = _send, .recv = _recv, .init = _init, .isr = _isr, .get = _get, .set = _set, }; #if defined(MODULE_AT86RFA1) || defined(MODULE_AT86RFR2) /* SOC has radio interrupts, store reference to netdev */ static netdev_t *at86rfmega_dev; #else static void _irq_handler(void *arg) { netdev_trigger_event_isr(arg); } #endif static int _init(netdev_t *netdev) { at86rf2xx_t *dev = (at86rf2xx_t *)netdev; #if defined(MODULE_AT86RFA1) || defined(MODULE_AT86RFR2) at86rfmega_dev = netdev; #else /* initialize GPIOs */ spi_init_cs(dev->params.spi, dev->params.cs_pin); gpio_init(dev->params.sleep_pin, GPIO_OUT); gpio_clear(dev->params.sleep_pin); gpio_init(dev->params.reset_pin, GPIO_OUT); gpio_set(dev->params.reset_pin); gpio_init_int(dev->params.int_pin, GPIO_IN, GPIO_RISING, _irq_handler, dev); /* Intentionally check if bus can be acquired, since getbus() drops the return value */ if (spi_acquire(dev->params.spi, dev->params.cs_pin, SPI_MODE_0, dev->params.spi_clk) < 0) { DEBUG("[at86rf2xx] error: unable to acquire SPI bus\n"); return -EIO; } spi_release(dev->params.spi); #endif /* reset hardware into a defined state */ at86rf2xx_hardware_reset(dev); /* test if the device is responding */ if (at86rf2xx_reg_read(dev, AT86RF2XX_REG__PART_NUM) != AT86RF2XX_PARTNUM) { DEBUG("[at86rf2xx] error: unable to read correct part number\n"); return -ENOTSUP; } /* reset device to default values and put it into RX state */ at86rf2xx_reset(dev); return 0; } static int _send(netdev_t *netdev, const iolist_t *iolist) { at86rf2xx_t *dev = (at86rf2xx_t *)netdev; size_t len = 0; at86rf2xx_tx_prepare(dev); /* load packet data into FIFO */ for (const iolist_t *iol = iolist; iol; iol = iol->iol_next) { /* current packet data + FCS too long */ if ((len + iol->iol_len + 2) > AT86RF2XX_MAX_PKT_LENGTH) { DEBUG("[at86rf2xx] error: packet too large (%u byte) to be send\n", (unsigned)len + 2); return -EOVERFLOW; } if (iol->iol_len) { len = at86rf2xx_tx_load(dev, iol->iol_base, iol->iol_len, len); } } /* send data out directly if pre-loading id disabled */ if (!(dev->flags & AT86RF2XX_OPT_PRELOADING)) { at86rf2xx_tx_exec(dev); } /* return the number of bytes that were actually loaded into the frame * buffer/send out */ return (int)len; } static int _recv(netdev_t *netdev, void *buf, size_t len, void *info) { at86rf2xx_t *dev = (at86rf2xx_t *)netdev; uint8_t phr; size_t pkt_len; /* frame buffer protection will be unlocked as soon as at86rf2xx_fb_stop() is called, * Set receiver to PLL_ON state to be able to free the SPI bus and avoid losing data. */ at86rf2xx_set_state(dev, AT86RF2XX_STATE_PLL_ON); /* start frame buffer access */ at86rf2xx_fb_start(dev); /* get the size of the received packet */ #if defined(MODULE_AT86RFA1) || defined(MODULE_AT86RFR2) phr = TST_RX_LENGTH; #else at86rf2xx_fb_read(dev, &phr, 1); #endif /* ignore MSB (refer p.80) and subtract length of FCS field */ pkt_len = (phr & 0x7f) - 2; /* return length when buf == NULL */ if (buf == NULL) { /* release SPI bus */ at86rf2xx_fb_stop(dev); /* drop packet, continue receiving */ if (len > 0) { /* set device back in operation state which was used before last transmission. * This state is saved in at86rf2xx.c/at86rf2xx_tx_prepare() e.g RX_AACK_ON */ at86rf2xx_set_state(dev, dev->idle_state); } return pkt_len; } /* not enough space in buf */ if (pkt_len > len) { at86rf2xx_fb_stop(dev); /* set device back in operation state which was used before last transmission. * This state is saved in at86rf2xx.c/at86rf2xx_tx_prepare() e.g RX_AACK_ON */ at86rf2xx_set_state(dev, dev->idle_state); return -ENOBUFS; } /* copy payload */ at86rf2xx_fb_read(dev, (uint8_t *)buf, pkt_len); /* Ignore FCS but advance fb read - we must give a temporary buffer here, * as we are not allowed to issue SPI transfers without any buffer */ uint8_t tmp[2]; at86rf2xx_fb_read(dev, tmp, 2); (void)tmp; /* AT86RF212B RSSI_BASE_VAL + 1.03 * ED, base varies for diff. modulation and datarates * AT86RF232 RSSI_BASE_VAL + ED, base -91dBm * AT86RF233 RSSI_BASE_VAL + ED, base -94dBm * AT86RF231 RSSI_BASE_VAL + ED, base -91dBm * AT86RFA1 RSSI_BASE_VAL + ED, base -90dBm * AT86RFR2 RSSI_BASE_VAL + ED, base -90dBm * * AT86RF231 MAN. p.92, 8.4.3 Data Interpretation * AT86RF232 MAN. p.91, 8.4.3 Data Interpretation * AT86RF233 MAN. p.102, 8.5.3 Data Interpretation * * for performance reasons we ignore the 1.03 scale factor on the 212B, * which causes a slight error in the values, but the accuracy of the ED * value is specified as +/- 5 dB, so it should not matter very much in real * life. */ if (info != NULL) { uint8_t ed = 0; netdev_ieee802154_rx_info_t *radio_info = info; at86rf2xx_fb_read(dev, &(radio_info->lqi), 1); #if defined(MODULE_AT86RF231) || defined(MODULE_AT86RFA1) || defined(MODULE_AT86RFR2) /* AT86RF231 does not provide ED at the end of the frame buffer, read * from separate register instead */ at86rf2xx_fb_stop(dev); ed = at86rf2xx_reg_read(dev, AT86RF2XX_REG__PHY_ED_LEVEL); #else at86rf2xx_fb_read(dev, &ed, 1); at86rf2xx_fb_stop(dev); #endif radio_info->rssi = RSSI_BASE_VAL + ed; DEBUG("[at86rf2xx] LQI:%d high is good, RSSI:%d high is either good or" "too much interference.\n", radio_info->lqi, radio_info->rssi); } else { at86rf2xx_fb_stop(dev); } /* set device back in operation state which was used before last transmission. * This state is saved in at86rf2xx.c/at86rf2xx_tx_prepare() e.g RX_AACK_ON */ at86rf2xx_set_state(dev, dev->idle_state); return pkt_len; } static int _set_state(at86rf2xx_t *dev, netopt_state_t state) { switch (state) { case NETOPT_STATE_STANDBY: at86rf2xx_set_state(dev, AT86RF2XX_STATE_TRX_OFF); break; case NETOPT_STATE_SLEEP: at86rf2xx_set_state(dev, AT86RF2XX_STATE_SLEEP); break; case NETOPT_STATE_IDLE: at86rf2xx_set_state(dev, AT86RF2XX_PHY_STATE_RX); break; case NETOPT_STATE_TX: if (dev->flags & AT86RF2XX_OPT_PRELOADING) { /* The netdev driver ISR switches the transceiver back to the * previous idle state after a completed TX. If the user tries * to initiate another transmission (retransmitting the same data) * without first going to TX_ARET_ON, the command to start TX * would be ignored, leading to a deadlock in this netdev driver * thread. * Additionally, avoids driver thread deadlock when PRELOADING * is set and the user tries to initiate TX without first calling * send() to write some frame data. */ if (dev->pending_tx == 0) { /* retransmission of old data, at86rf2xx_tx_prepare normally * increments this and the ISR for TX_END decrements it, to * know when to switch back to the idle state. */ ++dev->pending_tx; } at86rf2xx_set_state(dev, AT86RF2XX_PHY_STATE_TX); at86rf2xx_tx_exec(dev); } break; case NETOPT_STATE_RESET: at86rf2xx_hardware_reset(dev); at86rf2xx_reset(dev); break; default: return -ENOTSUP; } return sizeof(netopt_state_t); } netopt_state_t _get_state(at86rf2xx_t *dev) { switch (at86rf2xx_get_status(dev)) { case AT86RF2XX_STATE_SLEEP: return NETOPT_STATE_SLEEP; case AT86RF2XX_STATE_TRX_OFF: return NETOPT_STATE_STANDBY; case AT86RF2XX_PHY_STATE_RX_BUSY: return NETOPT_STATE_RX; case AT86RF2XX_PHY_STATE_TX: case AT86RF2XX_PHY_STATE_TX_BUSY: return NETOPT_STATE_TX; case AT86RF2XX_PHY_STATE_RX: default: return NETOPT_STATE_IDLE; } } static int _get(netdev_t *netdev, netopt_t opt, void *val, size_t max_len) { at86rf2xx_t *dev = (at86rf2xx_t *)netdev; if (netdev == NULL) { return -ENODEV; } /* getting these options doesn't require the transceiver to be responsive */ switch (opt) { case NETOPT_CHANNEL_PAGE: assert(max_len >= sizeof(uint16_t)); ((uint8_t *)val)[1] = 0; ((uint8_t *)val)[0] = at86rf2xx_get_page(dev); return sizeof(uint16_t); case NETOPT_STATE: assert(max_len >= sizeof(netopt_state_t)); *((netopt_state_t *)val) = _get_state(dev); return sizeof(netopt_state_t); case NETOPT_PRELOADING: if (dev->flags & AT86RF2XX_OPT_PRELOADING) { *((netopt_enable_t *)val) = NETOPT_ENABLE; } else { *((netopt_enable_t *)val) = NETOPT_DISABLE; } return sizeof(netopt_enable_t); case NETOPT_PROMISCUOUSMODE: if (!IS_ACTIVE(AT86RF2XX_BASIC_MODE)) { if (dev->flags & AT86RF2XX_OPT_PROMISCUOUS) { *((netopt_enable_t *)val) = NETOPT_ENABLE; } else { *((netopt_enable_t *)val) = NETOPT_DISABLE; } return sizeof(netopt_enable_t); } break; case NETOPT_RX_START_IRQ: *((netopt_enable_t *)val) = !!(dev->flags & AT86RF2XX_OPT_TELL_RX_START); return sizeof(netopt_enable_t); case NETOPT_RX_END_IRQ: *((netopt_enable_t *)val) = !!(dev->flags & AT86RF2XX_OPT_TELL_RX_END); return sizeof(netopt_enable_t); case NETOPT_TX_START_IRQ: *((netopt_enable_t *)val) = !!(dev->flags & AT86RF2XX_OPT_TELL_TX_START); return sizeof(netopt_enable_t); case NETOPT_TX_END_IRQ: *((netopt_enable_t *)val) = !!(dev->flags & AT86RF2XX_OPT_TELL_TX_END); return sizeof(netopt_enable_t); case NETOPT_CSMA: if (!IS_ACTIVE(AT86RF2XX_BASIC_MODE)) { *((netopt_enable_t *)val) = !!(dev->flags & AT86RF2XX_OPT_CSMA); return sizeof(netopt_enable_t); } break; /* Only radios with the XAH_CTRL_2 register support frame retry reporting */ #if AT86RF2XX_HAVE_RETRIES case NETOPT_TX_RETRIES_NEEDED: if (!IS_ACTIVE(AT86RF2XX_BASIC_MODE)) { assert(max_len >= sizeof(uint8_t)); *((uint8_t *)val) = dev->tx_retries; return sizeof(uint8_t); } break; #endif default: /* Can still be handled in second switch */ break; } int res; if (((res = netdev_ieee802154_get((netdev_ieee802154_t *)netdev, opt, val, max_len)) >= 0) || (res != -ENOTSUP)) { return res; } uint8_t old_state = at86rf2xx_get_status(dev); /* temporarily wake up if sleeping */ if (old_state == AT86RF2XX_STATE_SLEEP) { at86rf2xx_assert_awake(dev); } /* these options require the transceiver to be not sleeping*/ switch (opt) { case NETOPT_TX_POWER: assert(max_len >= sizeof(int16_t)); *((uint16_t *)val) = at86rf2xx_get_txpower(dev); res = sizeof(uint16_t); break; case NETOPT_RETRANS: if (!IS_ACTIVE(AT86RF2XX_BASIC_MODE)) { assert(max_len >= sizeof(uint8_t)); *((uint8_t *)val) = at86rf2xx_get_max_retries(dev); res = sizeof(uint8_t); } break; case NETOPT_CSMA_RETRIES: if (!IS_ACTIVE(AT86RF2XX_BASIC_MODE)) { assert(max_len >= sizeof(uint8_t)); *((uint8_t *)val) = at86rf2xx_get_csma_max_retries(dev); res = sizeof(uint8_t); } break; case NETOPT_CCA_THRESHOLD: assert(max_len >= sizeof(int8_t)); *((int8_t *)val) = at86rf2xx_get_cca_threshold(dev); res = sizeof(int8_t); break; case NETOPT_IS_CHANNEL_CLR: assert(max_len >= sizeof(netopt_enable_t)); *((netopt_enable_t *)val) = at86rf2xx_cca(dev); res = sizeof(netopt_enable_t); break; case NETOPT_LAST_ED_LEVEL: assert(max_len >= sizeof(int8_t)); *((int8_t *)val) = at86rf2xx_get_ed_level(dev); res = sizeof(int8_t); break; case NETOPT_AUTOACK: if (!IS_ACTIVE(AT86RF2XX_BASIC_MODE)) { assert(max_len >= sizeof(netopt_enable_t)); uint8_t tmp = at86rf2xx_reg_read(dev, AT86RF2XX_REG__CSMA_SEED_1); *((netopt_enable_t *)val) = (tmp & AT86RF2XX_CSMA_SEED_1__AACK_DIS_ACK) ? false : true; res = sizeof(netopt_enable_t); } break; #ifdef MODULE_NETDEV_IEEE802154_OQPSK case NETOPT_IEEE802154_PHY: assert(max_len >= sizeof(int8_t)); *(uint8_t *)val = at86rf2xx_get_phy_mode(dev); return sizeof(uint8_t); case NETOPT_OQPSK_RATE: assert(max_len >= sizeof(int8_t)); *(uint8_t *)val = at86rf2xx_get_rate(dev); return sizeof(uint8_t); #endif /* MODULE_NETDEV_IEEE802154_OQPSK */ default: res = -ENOTSUP; break; } /* go back to sleep if were sleeping */ if (old_state == AT86RF2XX_STATE_SLEEP) { at86rf2xx_set_state(dev, AT86RF2XX_STATE_SLEEP); } return res; } static int _set(netdev_t *netdev, netopt_t opt, const void *val, size_t len) { at86rf2xx_t *dev = (at86rf2xx_t *)netdev; if (dev == NULL) { return -ENODEV; } uint8_t old_state = at86rf2xx_get_status(dev); int res = -ENOTSUP; /* temporarily wake up if sleeping and opt != NETOPT_STATE. * opt != NETOPT_STATE check prevents redundant wake-up. * when opt == NETOPT_STATE, at86rf2xx_set_state() will wake up the * radio if needed. */ if ((old_state == AT86RF2XX_STATE_SLEEP) && (opt != NETOPT_STATE)) { at86rf2xx_assert_awake(dev); } switch (opt) { case NETOPT_ADDRESS: assert(len == sizeof(network_uint16_t)); at86rf2xx_set_addr_short(dev, val); /* don't set res to set netdev_ieee802154_t::short_addr */ break; case NETOPT_ADDRESS_LONG: assert(len == sizeof(eui64_t)); at86rf2xx_set_addr_long(dev, val); /* don't set res to set netdev_ieee802154_t::long_addr */ break; case NETOPT_NID: assert(len == sizeof(uint16_t)); at86rf2xx_set_pan(dev, *((const uint16_t *)val)); /* don't set res to set netdev_ieee802154_t::pan */ break; case NETOPT_CHANNEL: assert(len == sizeof(uint16_t)); uint8_t chan = (((const uint16_t *)val)[0]) & UINT8_MAX; #if AT86RF2XX_MIN_CHANNEL if (chan < AT86RF2XX_MIN_CHANNEL || chan > AT86RF2XX_MAX_CHANNEL) { #else if (chan > AT86RF2XX_MAX_CHANNEL) { #endif /* AT86RF2XX_MIN_CHANNEL */ res = -EINVAL; break; } at86rf2xx_set_chan(dev, chan); /* don't set res to set netdev_ieee802154_t::chan */ break; case NETOPT_CHANNEL_PAGE: assert(len == sizeof(uint16_t)); uint8_t page = (((const uint16_t *)val)[0]) & UINT8_MAX; #ifdef MODULE_AT86RF212B if ((page != 0) && (page != 2)) { res = -EINVAL; } else { at86rf2xx_set_page(dev, page); res = sizeof(uint16_t); } #else /* rf23x only supports page 0, no need to configure anything in the driver. */ if (page != 0) { res = -EINVAL; } else { res = sizeof(uint16_t); } #endif break; case NETOPT_TX_POWER: assert(len <= sizeof(int16_t)); at86rf2xx_set_txpower(dev, *((const int16_t *)val)); res = sizeof(uint16_t); break; case NETOPT_STATE: assert(len <= sizeof(netopt_state_t)); res = _set_state(dev, *((const netopt_state_t *)val)); break; case NETOPT_AUTOACK: if (!IS_ACTIVE(AT86RF2XX_BASIC_MODE)) { at86rf2xx_set_option(dev, AT86RF2XX_OPT_AUTOACK, ((const bool *)val)[0]); res = sizeof(netopt_enable_t); } break; case NETOPT_ACK_PENDING: if (!IS_ACTIVE(AT86RF2XX_BASIC_MODE)) { at86rf2xx_set_option(dev, AT86RF2XX_OPT_ACK_PENDING, ((const bool *)val)[0]); res = sizeof(netopt_enable_t); } break; case NETOPT_RETRANS: if (!IS_ACTIVE(AT86RF2XX_BASIC_MODE)) { assert(len <= sizeof(uint8_t)); at86rf2xx_set_max_retries(dev, *((const uint8_t *)val)); res = sizeof(uint8_t); } break; case NETOPT_PRELOADING: at86rf2xx_set_option(dev, AT86RF2XX_OPT_PRELOADING, ((const bool *)val)[0]); res = sizeof(netopt_enable_t); break; case NETOPT_PROMISCUOUSMODE: if (!IS_ACTIVE(AT86RF2XX_BASIC_MODE)) { at86rf2xx_set_option(dev, AT86RF2XX_OPT_PROMISCUOUS, ((const bool *)val)[0]); res = sizeof(netopt_enable_t); } break; case NETOPT_RX_START_IRQ: at86rf2xx_set_option(dev, AT86RF2XX_OPT_TELL_RX_START, ((const bool *)val)[0]); res = sizeof(netopt_enable_t); break; case NETOPT_RX_END_IRQ: at86rf2xx_set_option(dev, AT86RF2XX_OPT_TELL_RX_END, ((const bool *)val)[0]); res = sizeof(netopt_enable_t); break; case NETOPT_TX_START_IRQ: at86rf2xx_set_option(dev, AT86RF2XX_OPT_TELL_TX_START, ((const bool *)val)[0]); res = sizeof(netopt_enable_t); break; case NETOPT_TX_END_IRQ: at86rf2xx_set_option(dev, AT86RF2XX_OPT_TELL_TX_END, ((const bool *)val)[0]); res = sizeof(netopt_enable_t); break; case NETOPT_CSMA: if (!IS_ACTIVE(AT86RF2XX_BASIC_MODE)) { at86rf2xx_set_option(dev, AT86RF2XX_OPT_CSMA, ((const bool *)val)[0]); res = sizeof(netopt_enable_t); } break; case NETOPT_CSMA_RETRIES: if (!IS_ACTIVE(AT86RF2XX_BASIC_MODE)) { assert(len <= sizeof(uint8_t)); if (!(dev->flags & AT86RF2XX_OPT_CSMA) || (*((uint8_t *)val) > 5)) { /* If CSMA is disabled, don't allow setting retries */ res = -EINVAL; } else { at86rf2xx_set_csma_max_retries(dev, *((const uint8_t *)val)); res = sizeof(uint8_t); } } break; case NETOPT_CCA_THRESHOLD: assert(len <= sizeof(int8_t)); at86rf2xx_set_cca_threshold(dev, *((const int8_t *)val)); res = sizeof(int8_t); break; #ifdef MODULE_NETDEV_IEEE802154_OQPSK case NETOPT_OQPSK_RATE: assert(len <= sizeof(int8_t)); if (at86rf2xx_set_rate(dev, *((const uint8_t *)val)) < 0) { res = -EINVAL; } else { res = sizeof(uint8_t); } break; #endif /* MODULE_NETDEV_IEEE802154_OQPSK */ #if IS_USED(MODULE_AT86RF2XX_AES_SPI) && \ IS_USED(MODULE_IEEE802154_SECURITY) case NETOPT_ENCRYPTION_KEY: assert(len >= IEEE802154_SEC_KEY_LENGTH); at86rf2xx_aes_key_write_encrypt(dev, val); if (memcmp(dev->netdev.sec_ctx.cipher.context.context, val, len)) { /* If the key changes, the frame conter can be reset to 0*/ dev->netdev.sec_ctx.frame_counter = 0; } memcpy(dev->netdev.sec_ctx.cipher.context.context, val, IEEE802154_SEC_KEY_LENGTH); res = IEEE802154_SEC_KEY_LENGTH; break; #endif /* IS_USED(MODULE_AT86RF2XX_AES_SPI) && \ IS_USED(MODULE_IEEE802154_SECURITY) */ default: break; } /* go back to sleep if were sleeping and state hasn't been changed */ if ((old_state == AT86RF2XX_STATE_SLEEP) && (opt != NETOPT_STATE)) { at86rf2xx_set_state(dev, AT86RF2XX_STATE_SLEEP); } if (res == -ENOTSUP) { res = netdev_ieee802154_set((netdev_ieee802154_t *)netdev, opt, val, len); } return res; } static void _isr_send_complete(at86rf2xx_t *dev, uint8_t trac_status) { netdev_t *netdev = &dev->netdev.netdev; if (IS_ACTIVE(AT86RF2XX_BASIC_MODE)) { netdev->event_callback(netdev, NETDEV_EVENT_TX_COMPLETE); return; } /* Only radios with the XAH_CTRL_2 register support frame retry reporting */ #if AT86RF2XX_HAVE_RETRIES && defined(AT86RF2XX_REG__XAH_CTRL_2) dev->tx_retries = (at86rf2xx_reg_read(dev, AT86RF2XX_REG__XAH_CTRL_2) & AT86RF2XX_XAH_CTRL_2__ARET_FRAME_RETRIES_MASK) >> AT86RF2XX_XAH_CTRL_2__ARET_FRAME_RETRIES_OFFSET; #endif DEBUG("[at86rf2xx] EVT - TX_END\n"); if (netdev->event_callback && (dev->flags & AT86RF2XX_OPT_TELL_TX_END)) { switch (trac_status) { #ifdef MODULE_OPENTHREAD case AT86RF2XX_TRX_STATE__TRAC_SUCCESS: netdev->event_callback(netdev, NETDEV_EVENT_TX_COMPLETE); DEBUG("[at86rf2xx] TX SUCCESS\n"); break; case AT86RF2XX_TRX_STATE__TRAC_SUCCESS_DATA_PENDING: netdev->event_callback(netdev, NETDEV_EVENT_TX_COMPLETE_DATA_PENDING); DEBUG("[at86rf2xx] TX SUCCESS DATA PENDING\n"); break; #else case AT86RF2XX_TRX_STATE__TRAC_SUCCESS: case AT86RF2XX_TRX_STATE__TRAC_SUCCESS_DATA_PENDING: netdev->event_callback(netdev, NETDEV_EVENT_TX_COMPLETE); DEBUG("[at86rf2xx] TX SUCCESS\n"); break; #endif case AT86RF2XX_TRX_STATE__TRAC_NO_ACK: netdev->event_callback(netdev, NETDEV_EVENT_TX_NOACK); DEBUG("[at86rf2xx] TX NO_ACK\n"); break; case AT86RF2XX_TRX_STATE__TRAC_CHANNEL_ACCESS_FAILURE: netdev->event_callback(netdev, NETDEV_EVENT_TX_MEDIUM_BUSY); DEBUG("[at86rf2xx] TX_CHANNEL_ACCESS_FAILURE\n"); break; default: DEBUG("[at86rf2xx] Unhandled TRAC_STATUS: %d\n", trac_status >> 5); } } } static inline void _isr_recv_complete(netdev_t *netdev) { at86rf2xx_t *dev = (at86rf2xx_t *) netdev; if (IS_ACTIVE(AT86RF2XX_BASIC_MODE)) { uint8_t phy_status = at86rf2xx_reg_read(dev, AT86RF2XX_REG__PHY_RSSI); bool crc_ok = phy_status & AT86RF2XX_PHY_RSSI_MASK__RX_CRC_VALID; if (crc_ok) { netdev->event_callback(netdev, NETDEV_EVENT_RX_COMPLETE); } else { netdev->event_callback(netdev, NETDEV_EVENT_CRC_ERROR); } } else { netdev->event_callback(netdev, NETDEV_EVENT_RX_COMPLETE); } } static void _isr(netdev_t *netdev) { at86rf2xx_t *dev = (at86rf2xx_t *) netdev; uint8_t irq_mask; uint8_t state; uint8_t trac_status; /* If transceiver is sleeping register access is impossible and frames are * lost anyway, so return immediately. */ state = at86rf2xx_get_status(dev); if (state == AT86RF2XX_STATE_SLEEP) { return; } /* read (consume) device status */ #if defined(MODULE_AT86RFA1) || defined(MODULE_AT86RFR2) irq_mask = dev->irq_status; dev->irq_status = 0; #else irq_mask = at86rf2xx_reg_read(dev, AT86RF2XX_REG__IRQ_STATUS); #endif trac_status = at86rf2xx_reg_read(dev, AT86RF2XX_REG__TRX_STATE) & AT86RF2XX_TRX_STATE_MASK__TRAC; if (irq_mask & AT86RF2XX_IRQ_STATUS_MASK__RX_START) { netdev->event_callback(netdev, NETDEV_EVENT_RX_STARTED); DEBUG("[at86rf2xx] EVT - RX_START\n"); } if (irq_mask & AT86RF2XX_IRQ_STATUS_MASK__TRX_END) { if ((state == AT86RF2XX_PHY_STATE_RX) || (state == AT86RF2XX_PHY_STATE_RX_BUSY)) { DEBUG("[at86rf2xx] EVT - RX_END\n"); if (!(dev->flags & AT86RF2XX_OPT_TELL_RX_END)) { return; } _isr_recv_complete(netdev); } else if (state == AT86RF2XX_PHY_STATE_TX) { /* check for more pending TX calls and return to idle state if * there are none */ assert(dev->pending_tx != 0); /* Radio is idle, any TX transaction is done */ dev->pending_tx = 0; at86rf2xx_set_state(dev, dev->idle_state); DEBUG("[at86rf2xx] return to idle state 0x%x\n", dev->idle_state); _isr_send_complete(dev, trac_status); } /* Only the case when an interrupt was received and the radio is busy * with a next PDU transmission when _isr is called. * dev->pending == 1 means a receive and immediately a send happened. * The receive is discarded as the send already overwrote the internal * buffer. * dev->pending == 2 means two transmits occurred and this is the isr for * the first. */ else if (state == AT86RF2XX_PHY_STATE_TX_BUSY) { if (dev->pending_tx > 1) { dev->pending_tx--; _isr_send_complete(dev, trac_status); } } } } #if defined(MODULE_AT86RFA1) || defined(MODULE_AT86RFR2) /** * @brief ISR for transceiver's TX_START interrupt * * In procedure TX_ARET the TRX24_TX_START interrupt is issued separately for every * frame transmission and frame retransmission. * Indicates the frame start of a transmitted acknowledge frame in procedure RX_AACK. * * Flow Diagram Manual p. 52 / 63 */ #if AT86RF2XX_HAVE_RETRIES ISR(TRX24_TX_START_vect){ /* __enter_isr(); is not necessary as there is nothing which causes a * thread_yield and the interrupt can not be interrupted by an other ISR */ at86rf2xx_t *dev = (at86rf2xx_t *) at86rfmega_dev; dev->tx_retries++; } #endif /** * @brief Transceiver PLL Lock * * Is triggered when PLL locked successfully. * * Manual p. 40 */ ISR(TRX24_PLL_LOCK_vect, ISR_BLOCK) { avr8_enter_isr(); DEBUG("TRX24_PLL_LOCK\n"); ((at86rf2xx_t *)at86rfmega_dev)->irq_status |= AT86RF2XX_IRQ_STATUS_MASK__PLL_LOCK; avr8_exit_isr(); } /** * @brief Transceiver PLL Unlock * * Is triggered when PLL unlocked unexpectedly. * * Manual p. 89 */ ISR(TRX24_PLL_UNLOCK_vect, ISR_BLOCK) { avr8_enter_isr(); DEBUG("TRX24_PLL_UNLOCK\n"); ((at86rf2xx_t *)at86rfmega_dev)->irq_status |= AT86RF2XX_IRQ_STATUS_MASK__PLL_UNLOCK; avr8_exit_isr(); } /** * @brief ISR for transceiver's receive start interrupt * * Is triggered when valid PHR is detected. * Save IRQ status and inform upper layer of data reception. * * Flow Diagram Manual p. 52 / 63 */ ISR(TRX24_RX_START_vect, ISR_BLOCK) { avr8_enter_isr(); uint8_t status = *AT86RF2XX_REG__TRX_STATE & AT86RF2XX_TRX_STATUS_MASK__TRX_STATUS; DEBUG("TRX24_RX_START 0x%x\n", status); ((at86rf2xx_t *)at86rfmega_dev)->irq_status |= AT86RF2XX_IRQ_STATUS_MASK__RX_START; /* Call upper layer to process valid PHR */ netdev_trigger_event_isr(at86rfmega_dev); avr8_exit_isr(); } /** * @brief ISR for transceiver's receive end interrupt * * Is triggered when valid data is received. FCS check passed. * Save IRQ status and inform upper layer of data reception. * * Flow Diagram Manual p. 52 / 63 */ ISR(TRX24_RX_END_vect, ISR_BLOCK) { avr8_enter_isr(); uint8_t status = *AT86RF2XX_REG__TRX_STATE & AT86RF2XX_TRX_STATUS_MASK__TRX_STATUS; DEBUG("TRX24_RX_END 0x%x\n", status); ((at86rf2xx_t *)at86rfmega_dev)->irq_status |= AT86RF2XX_IRQ_STATUS_MASK__RX_END; /* Call upper layer to process received data */ netdev_trigger_event_isr(at86rfmega_dev); avr8_exit_isr(); } /** * @brief Transceiver CCAED Measurement finished * * Is triggered when CCA or ED measurement completed. * * Manual p. 74 and p. 76 */ ISR(TRX24_CCA_ED_DONE_vect, ISR_BLOCK) { avr8_enter_isr(); DEBUG("TRX24_CCA_ED_DONE\n"); ((at86rf2xx_t *)at86rfmega_dev)->irq_status |= AT86RF2XX_IRQ_STATUS_MASK__CCA_ED_DONE; avr8_exit_isr(); } /** * @brief Transceiver Frame Address Match, indicates incoming frame * * Is triggered when Frame with valid Address is received. * Can be used to wake up MCU from sleep, etc. * * Flow Diagram Manual p. 52 / 63 */ ISR(TRX24_XAH_AMI_vect, ISR_BLOCK) { avr8_enter_isr(); DEBUG("TRX24_XAH_AMI\n"); ((at86rf2xx_t *)at86rfmega_dev)->irq_status |= AT86RF2XX_IRQ_STATUS_MASK__AMI; avr8_exit_isr(); } /** * @brief ISR for transceiver's transmit end interrupt * * Is triggered when data or when acknowledge frames where send. * * Flow Diagram Manual p. 52 / 63 */ ISR(TRX24_TX_END_vect, ISR_BLOCK) { avr8_enter_isr(); at86rf2xx_t *dev = (at86rf2xx_t *) at86rfmega_dev; uint8_t status = *AT86RF2XX_REG__TRX_STATE & AT86RF2XX_TRX_STATUS_MASK__TRX_STATUS; DEBUG("TRX24_TX_END 0x%x\n", status); /* only inform upper layer when a transmission was done, * not for sending acknowledge frames if data was received. */ if (status != AT86RF2XX_PHY_STATE_RX) { dev->irq_status |= AT86RF2XX_IRQ_STATUS_MASK__TX_END; /* Call upper layer to process if data was send successful */ netdev_trigger_event_isr(at86rfmega_dev); } avr8_exit_isr(); } /** * @brief ISR for transceiver's wakeup finished interrupt * * Is triggered when transceiver module reset is finished. * Save IRQ status and inform upper layer the transceiver is operational. * * Manual p. 40 */ ISR(TRX24_AWAKE_vect, ISR_BLOCK) { avr8_enter_isr(); DEBUG("TRX24_AWAKE\n"); ((at86rf2xx_t *)at86rfmega_dev)->irq_status |= AT86RF2XX_IRQ_STATUS_MASK__AWAKE; /* Call upper layer to process transceiver wakeup finished */ netdev_trigger_event_isr(at86rfmega_dev); avr8_exit_isr(); } #endif /* MODULE_AT86RFA1 || MODULE_AT86RFR2 */