/* * Copyright (C) 2014-2016 Freie Universität Berlin * * This file is subject to the terms and conditions of the GNU Lesser General * Public License v2.1. See the file LICENSE in the top level directory for more * details. */ /** * @ingroup cpu_stm32f1 * @{ * * @file * @brief Low-level timer driver implementation * * @author Hauke Petersen * @author Thomas Eichinger * * @} */ #include "cpu.h" #include "sched.h" #include "thread.h" #include "periph/timer.h" /** * @brief Interrupt context for each configured timer */ static timer_isr_ctx_t isr_ctx[TIMER_NUMOF]; /** * @brief Get the timer device */ static inline TIM_TypeDef *dev(tim_t tim) { return timer_config[tim].dev; } /** * @brief Enable the peripheral clock for the given timer */ static void clk_en(tim_t tim) { if (timer_config[tim].bus == APB1) { RCC->APB1ENR |= timer_config[tim].rcc_bit; } else { RCC->APB2ENR |= timer_config[tim].rcc_bit; } } int timer_init(tim_t tim, unsigned long freq, timer_cb_t cb, void *arg) { /* check if device is valid */ if (tim >= TIMER_NUMOF) { return -1; } /* remember the interrupt context */ isr_ctx[tim].cb = cb; isr_ctx[tim].arg = arg; /* enable the peripheral clock */ clk_en(tim); /* configure the timer as upcounter in continuous mode */ dev(tim)->CR1 = 0; dev(tim)->CR2 = 0; dev(tim)->ARR = TIMER_MAXVAL; /* set prescaler */ dev(tim)->PSC = ((CLOCK_CORECLOCK / freq) - 1); /* generate an update event to apply our configuration */ dev(tim)->EGR = TIM_EGR_UG; /* enable the timer's interrupt */ timer_irq_enable(tim); /* reset the counter and start the timer */ timer_start(tim); return 0; } int timer_set(tim_t tim, int channel, unsigned int timeout) { int now = timer_read(tim); return timer_set_absolute(tim, channel, now + timeout); } int timer_set_absolute(tim_t tim, int channel, unsigned int value) { if (channel >= TIMER_CHANNELS) { return -1; } dev(tim)->CCR[channel] = (value & TIMER_MAXVAL); dev(tim)->SR &= ~(TIM_SR_CC1IF << channel); dev(tim)->DIER |= (TIM_DIER_CC1IE << channel); return 0; } int timer_clear(tim_t tim, int channel) { if (channel >= TIMER_CHANNELS) { return -1; } dev(tim)->DIER &= ~(TIM_DIER_CC1IE << channel); return 0; } unsigned int timer_read(tim_t tim) { return (unsigned int)dev(tim)->CNT; } void timer_start(tim_t tim) { dev(tim)->CR1 |= TIM_CR1_CEN; } void timer_stop(tim_t tim) { dev(tim)->CR1 &= ~(TIM_CR1_CEN); } void timer_irq_enable(tim_t tim) { NVIC_EnableIRQ(timer_config[tim].irqn); } void timer_irq_disable(tim_t tim) { NVIC_DisableIRQ(timer_config[tim].irqn); } static inline void irq_handler(tim_t tim) { uint32_t status = (dev(tim)->SR & dev(tim)->DIER); for (unsigned int i = 0; i < TIMER_CHANNELS; i++) { if (status & (TIM_SR_CC1IF << i)) { dev(tim)->DIER &= ~(TIM_DIER_CC1IE << i); isr_ctx[tim].cb(isr_ctx[tim].arg, i); } } if (sched_context_switch_request) { thread_yield(); } } #ifdef TIMER_0_ISR void TIMER_0_ISR(void) { irq_handler(0); } #endif #ifdef TIMER_1_ISR void TIMER_1_ISR(void) { irq_handler(1); } #endif #ifdef TIMER_2_ISR void TIMER_2_ISR(void) { irq_handler(2); } #endif #ifdef TIMER_3_ISR void TIMER_3_ISR(void) { irq_handler(3); } #endif #ifdef TIMER_4_ISR void TIMER_4_ISR(void) { irq_handler(4); } #endif