/* * Copyright (C) 2018 Gunar Schorcht * * This file is subject to the terms and conditions of the GNU Lesser * General Public License v2.1. See the file LICENSE in the top level * directory for more details. */ /** * @ingroup cpu_esp8266 * @{ * * @file * @brief Implementation of the CPU initialization * * @author Gunar Schorcht * @} */ #define ENABLE_DEBUG 0 #include "debug.h" #include #include #include "kernel_init.h" #include "log.h" #include "periph/init.h" #include "c_types.h" #include "spi_flash.h" #include "board.h" #include "common.h" #include "exceptions.h" #include "syscalls.h" #include "tools.h" #include "thread_arch.h" #include "esp/iomux_regs.h" #include "esp/spi_regs.h" #include "esp/xtensa_ops.h" #include "sdk/sdk.h" #if MODULE_ESP_GDBSTUB #include "esp-gdbstub/gdbstub.h" #endif extern void board_init(void); extern void board_print_config(void); uint32_t hwrand (void); #ifdef MODULE_NEWLIB_SYSCALLS_DEFAULT /* initialization as it should be called from newlibc */ extern void _init(void); #endif extern uint8_t _bss_start; extern uint8_t _bss_end; extern uint8_t _sheap; extern uint8_t _eheap; #ifdef MODULE_ESP_SDK #include "sdk/ets_task.h" /** * @brief System main loop called by the ETS * * This function is called by ETS after all initializations has been * finished to start periodic processing of defined ETS tasks. We * overwrite this ETS function to take over the control and to start RIOT. */ void ets_run(void) { #if ENABLE_DEBUG register uint32_t *sp __asm__ ("a1"); ets_uart_printf("_stack %p\n", sp); ets_uart_printf("_bss_start %p\n", &_bss_start); ets_uart_printf("_bss_end %p\n", &_bss_end); ets_uart_printf("_heap_start %p\n", &_sheap); ets_uart_printf("_heap_end %p\n", &_eheap); ets_uart_printf("_heap_free %lu\n", get_free_heap_size()); #endif /* init min task priority */ ets_task_min_prio = 0; #ifdef MODULE_NEWLIB_SYSCALLS_DEFAULT _init(); #endif ets_tasks_init(); /* enable interrupts used by ETS/SDK */ #ifndef MODULE_ESP_SDK_INT_HANDLING ets_isr_unmask(BIT(ETS_FRC2_INUM)); ets_isr_unmask(BIT(ETS_WDEV_INUM)); ets_isr_unmask(BIT(ETS_WDT_INUM)); #endif #ifdef MODULE_ESP_GDBSTUB gdbstub_init(); #endif #if ENABLE_DEBUG==0 /* disable SDK messages */ system_set_os_print(0); #endif #ifdef CONTEXT_SWITCH_BY_INT extern void IRAM thread_yield_isr(void* arg); ets_isr_attach(ETS_SOFT_INUM, thread_yield_isr, NULL); ets_isr_unmask(BIT(ETS_SOFT_INUM)); #endif /* does not return */ kernel_init(); } /** * @brief Initialize the CPU, the board and the peripherals * * This function is called by ESP8266 SDK when all system initializations * has been finished. */ void system_init(void) { LOG_INFO("\nStarting ESP8266 CPU with ID: %08x", system_get_chip_id()); LOG_INFO("\nSDK Version %s\n\n", system_get_sdk_version()); /* avoid reconnection all the time */ wifi_station_disconnect(); /* set exception handlers */ init_exceptions (); /* init random number generator */ srand(hwrand()); /* init flash drive */ extern void flash_drive_init (void); flash_drive_init(); /* trigger static peripheral initialization */ periph_init(); /* trigger board initialization */ board_init(); /* print the board config */ board_print_config(); } /** * @brief Entry point in user space after a system reset * * This function is called after system reset by the ESP8266 SDK. In this * functions following steps are neccessary: * * 1. Reinit system timer as microsecond timer (precision is 500 us) * 2. Set the UART parameters for serial output * 3. Set the system initialization callback */ void IRAM user_init (void) { syscalls_init (); thread_isr_stack_init (); /* set system frequency */ system_update_cpu_freq(ESP8266_CPU_FREQUENCY); /* reinit system timer as microsecond timer */ system_timer_reinit (); /* setup the serial communication */ uart_div_modify(0, UART_CLK_FREQ / STDIO_UART_BAUDRATE); /* once the ETS initialization is done we can start with our code as callback */ system_init_done_cb(system_init); /* keep wifi interface in null mode per default */ wifi_set_opmode_current (0); } #else /* MODULE_ESP_SDK */ #include "esp/dport_regs.h" #include "esp/phy_info.h" #include "esp/spiflash.h" #include "user_config.h" /** * @brief Defines the structure of the file header in SPI flash * * @see https://github.com/espressif/esptool/wiki/Firmware-Image-Format */ typedef struct __attribute__((packed)) { uint8_t magic; /* always 0xe9 */ uint8_t segments; /* number of segments */ uint8_t mode; /* 0 - qio, 1 - qout, 2 - dio, 3 - dout */ uint8_t speed:4; /* 0 - 40 MHz, 1 - 26 MHz, 2 - 20 MHz, 15 - 80 MHz */ uint8_t size:4; /* 0 - 512 kB, 1 - 256 kB, 2 - 1 MB, 3 - 2 MB, 4 - 4 MB */ } _spi_flash_header; #define SPI_FLASH_SECTOR_SIZE 4096 struct s_info { uint32 ap_ip; /* +00 */ uint32 ap_mask; /* +04 */ uint32 ap_gw; /* +08 */ uint32 st_ip; /* +0C */ uint32 st_mask; /* +10 */ uint32 st_gw; /* +14 */ uint8 ap_mac[6]; /* +18 */ uint8 st_mac[6]; /* +1E */ } __attribute__((packed, aligned(4))); static struct s_info info; enum rst_reason { REASON_DEFAULT_RST = 0, REASON_WDT_RST = 1, REASON_EXCEPTION_RST = 2, REASON_SOFT_WDT_RST = 3, REASON_SOFT_RESTART = 4, REASON_DEEP_SLEEP_AWAKE = 5, REASON_EXT_SYS_RST = 6 }; struct rst_info{ uint32 reason; uint32 exccause; uint32 epc1; uint32 epc2; uint32 epc3; uint32 excvaddr; uint32 depc; }; /** * @brief System configuration store formats * * source https://github.com/pvvx/esp8266web * (c) PV` 2015 * * @{ */ /* SDK 2.0.0 */ #define wifi_config_size 0x494 /* 1172 bytes */ #define g_ic_size (wifi_config_size + 532) /* 1704 bytes */ struct ets_store_wifi_hdr { /* Sector flash addr flashchip->chip_size-0x1000 (0x4027F000) */ uint8 bank; /* +00 = 0, 1 WiFi config flash addr: */ /* 0 - flashchip->chip_size-0x3000 (0x7D000), */ /* 1 - flashchip->chip_size-0x2000 */ uint8 unused[3]; /* +01 = 0xff, 0xff, 0xff */ uint32 flag; /* +04 = 0x55aa55aa */ uint32 wr_cnt; /* +08 = 0x00000001 */ uint32 len[2]; /* +12 = 0x00000020, 0xffffffff */ uint32 chk[2]; /* +20 = 0x000000ed, 0xffffffff */ uint32 flag2; /* +28 = 0xaa55aa55 */ }; static const uint8_t ets_store_wifi_hdr_default[sizeof(struct ets_store_wifi_hdr)] = { 0x00, 0xff, 0xff, 0xff, 0xaa, 0x55, 0xaa, 0x55, 0x01, 0x00, 0x00, 0x00, 0x20, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff, 0xed, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff, 0x55, 0xaa, 0x55, 0xaa }; struct s_wifi_store { /* WiFi config flash addr: flashchip->chip_size - 0x3000 or -0x2000 */ /* SDK >= 2.0.0 */ uint8 boot_info[8]; /* +000 0x000 (boot_info[1]) boot_version */ uint8 wfmode[4]; /* +008 0x008 */ uint32 st_ssid_len; /* +012 0x00c */ uint8 st_ssid[32]; /* +016 0x010 */ uint8 field_048[7]; /* +048 0x030 */ uint8 st_passw[64]; /* +055 0x037 */ uint8 field_119; /* +119 0x077 */ uint8 data_120[32]; /* +120 0x078 */ uint8 field_152[17]; /* +152 0x098 */ uint8 field_169; /* +169 0x0a9 */ uint8 field_170[6]; /* +170 0x0aa */ uint32 ap_ssid_len; /* +176 0x0b0 */ uint8 ap_ssid[32]; /* +180 0x0b4 */ uint8 ap_passw[64]; /* +212 0x0d4 */ uint8 field_276[32]; /* +276 0x114 */ uint8 field_308; /* +308 0x134 */ uint8 wfchl; /* +309 0x135 */ uint8 field_310; /* +310 0x136 */ uint8 field_311; /* +311 0x137 */ uint8 field_312; /* +312 0x138 */ uint8 field_313; /* +313 0x139 */ uint8 field_314; /* +314 0x13a */ uint8 field_315; /* +315 0x13b */ uint16 field_316; /* +316 0x13c */ uint8 field_318[2]; /* +318 0x13e */ uint32 st1ssid_len; /* +320 0x140 */ uint8 st1ssid[32]; /* +324 0x144 */ uint8 st1passw[64]; /* +356 0x164 */ uint8 field_420[400]; /* +420 0x1a4 */ uint32 field_820[3]; /* +820 0x334 */ uint8 field_832[4]; /* +832 0x340 wifi_station_set_auto_connect */ uint32 phy_mode; /* +836 0x344 */ uint8 field_840[36]; /* +840 0x348 */ uint16 beacon; /* +876 0x36c 876+532 g_ic+1408 */ uint8 field_878[2]; /* +878 0x36e */ uint32 field_880; /* +880 0x370 */ uint32 field_884; /* +884 0x374 */ uint32 field_888; /* +888 0x378 */ uint8 field_892[284]; /* +892 0x37c ... 1176 0x498 */ }; struct s_g_ic { uint32 boot_info; /* +0000 g_ic+0 0x3FFF2324 boot_version? */ uint32 field_004; /* +0004 g_ic+4 */ uint32 field_008; /* +0008 g_ic+8 */ uint32 field_00C; /* +000C g_ic+12 */ struct netif **netif1; /* +0010 g_ic+16 */ struct netif **netif2; /* +0014 g_ic+20 */ uint32 field_018; /* +0018 g_ic+24 */ uint32 field_01C; /* +001C g_ic+28 */ uint32 field_020; /* +0020 g_ic+32 */ uint32 field_024; /* +0024 g_ic+36 */ uint32 field_028; /* +0028 g_ic+40 */ uint8 field_02C[84]; /* +002C g_ic+44 */ uint32 field_080; /* +0080 g_ic+128 */ uint8 field_084[200]; /* +0084 g_ic+132 */ /* [0x12c] */ void * field_14C; /* +014C g_ic+332 */ uint32 ratetable; /* +0150 g_ic+336 */ uint8 field_154[44]; /* +0154 g_ic+340 */ uint32 field_180; /* +0180 g_ic+384 */ /* [0x170..0x180] wifi_get_user_ie */ void * field_184; /* +0184 g_ic+388 user_ie_manufacturer_recv_cb */ uint32 field_188; /* +0188 g_ic+392 */ uint32 field_18C; /* +018C g_ic+396 */ uint32 field_190; /* +0190 g_ic+400 */ uint32 field_194; /* +0194 g_ic+404 */ uint32 field_198; /* +0198 g_ic+408 */ uint32 field_19C; /* +019C g_ic+412 */ uint32 field_1A0; /* +01A0 g_ic+416 */ uint32 field_1A4; /* +01A4 g_ic+420 */ uint32 field_1A8; /* +01A8 g_ic+424 */ uint32 field_1AC; /* +01AC g_ic+428 */ uint32 field_1B0; /* +01B0 g_ic+432 */ uint32 field_1B4; /* +01B4 g_ic+436 */ uint32 field_1B8; /* +01B8 g_ic+440 */ uint32 field_1BC; /* +01BC g_ic+444 */ uint32 field_1C0; /* +01C0 g_ic+448 */ uint32 field_1C4; /* +01C4 g_ic+452 */ uint32 field_1C8[19]; /* +01C8 g_ic+456 ...532 */ struct s_wifi_store wifi_store; /* g_ic+??? */ }; typedef union _u_g_ic{ struct s_g_ic g; uint8 c[g_ic_size]; uint16 w[g_ic_size/2]; uint32 d[g_ic_size/4]; } u_g_ic; static u_g_ic g_ic; /** }@ */ /** * Following functions are from https://github.com/pvvx/esp8266web * (c) PV` 2015 * * @{ */ void read_macaddr_from_otp(uint8_t* mac) { /* fixed prefix */ mac[0] = 0x18; mac[1] = 0xfe; mac[2] = 0x34; if ((!(DPORT.OTP_CHIPID & (1 << 15))) || ((DPORT.OTP_MAC0 == 0) && (DPORT.OTP_MAC1 == 0))) { mac[3] = 0x18; mac[4] = 0xfe; mac[5] = 0x34; } else { mac[3] = (DPORT.OTP_MAC1 >> 8) & 0xff; mac[4] = DPORT.OTP_MAC1 & 0xff; mac[5] = (DPORT.OTP_MAC0 >> 24) & 0xff; } } int ICACHE_FLASH_ATTR flash_data_check(uint8 *check_buf) { uint32 cbuf[32]; uint32 *pcbuf = cbuf; uint8 *pbuf = check_buf; int i = 27; while (i--) { *pcbuf = pbuf[0] | (pbuf[1]<<8) | (pbuf[2]<<16) | (pbuf[3]<<24); pcbuf++; pbuf+=4; } cbuf[24] = (DPORT.OTP_MAC1 & 0xFFFFFFF) | ((DPORT.OTP_CHIPID & 0xF000) << 16); cbuf[25] = (DPORT.OTP_MAC2 & 0xFFFFFFF) | (DPORT.OTP_MAC0 & 0xFF000000); pcbuf = cbuf; uint32 xsum = 0; do { xsum += *pcbuf++; } while (pcbuf != &cbuf[26]); xsum ^= 0xFFFFFFFF; if (cbuf[26] != xsum) { return 1; } return 0; } /** }@ */ /** * @brief Startup function hook placed at 0x40100000 */ void __attribute__((section(".UserEnter.text"))) NORETURN _call_user_start_hook(void) { __asm__ volatile ( " vectors_base: .word 0x40100000 \n" /* must contain entry point */ " \n" " _call_user_start: \n" /* system startup function */ " .global _call_user_start \n" " l32r a2, vectors_base \n" /* set vector base */ " wsr a2, vecbase \n" " call0 cpu_user_start \n" /* call startup function */ ); UNREACHABLE(); } void ICACHE_FLASH_ATTR start_phase2 (void); /** * @brief Startup function * * This function is the entry point in the user application. It is called * after a system reset to startup the system. */ void __attribute__((noreturn)) IRAM cpu_user_start (void) { register uint32_t *sp __asm__ ("a1"); (void)sp; /* PHASE 1: startup in SDK */ struct rst_info rst_if = { .reason = 0 }; system_rtc_mem_read(0, &rst_if, sizeof(struct rst_info)); /** * Setup the serial communication speed. After cold start UART_CLK_FREQ is * only 26/40 (65 %). So the baud rate would be only 74880. To have 115200 * at the beginning of the cold start, we have to set it to 177231 baud. * This is changed later in function system_set_pll. */ system_set_pll(1); /* parameter is fix (from esp_init_data_default.bin byte 48) */ #if 0 if (rst_if.reason > REASON_DEFAULT_RST) { /* warm start */ uart_div_modify(0, UART_CLK_FREQ / STDIO_UART_BAUDRATE); } else { /* cold start */ uart_div_modify(0, UART_CLK_FREQ / 177231); } #else uart_div_modify(0, UART_CLK_FREQ / STDIO_UART_BAUDRATE); #endif /* flush uart_tx_buffer */ ets_uart_printf(" \n"); #if ENABLE_DEBUG ets_uart_printf("reset reason: %d %d\n", rst_if.reason, rtc_get_reset_reason()); ets_uart_printf("exccause=%ld excvaddr=%08lx\n", rst_if.exccause, rst_if.excvaddr); ets_uart_printf("epc1=%08lx epc2=%08lx epc3=%08lx\n", rst_if.epc1, rst_if.epc2, rst_if.epc3); ets_uart_printf("depc=%ld\n", rst_if.depc); ets_uart_printf("_stack %p\n", sp); ets_uart_printf("_bss_start %p\n", &_bss_start); ets_uart_printf("_bss_end %p\n", &_bss_end); ets_uart_printf("_heap_start %p\n", &_sheap); ets_uart_printf("_heap_end %p\n", &_eheap); ets_uart_printf("_heap_free %lu\n", get_free_heap_size()); #endif uint32_t flash_sectors; uint32_t flash_size; _spi_flash_header flash_header; SPI(0).USER0 |= SPI_USER0_CS_SETUP; SPIRead(0, (uint32_t*)&flash_header, 4); assert (flash_header.magic == 0xe9); /* SPI flash sectors a 4.096 byte */ switch (flash_header.size) { case 0: flash_sectors = 128; break; /* 512 kByte */ case 1: flash_sectors = 64; break; /* 256 kByte */ case 2: flash_sectors = 256; break; /* 1 MByte */ case 3: flash_sectors = 512; break; /* 2 MByte */ case 4: flash_sectors = 1024; break; /* 4 MByte */ default: flash_sectors = 128; break; /* default 512 kByte */ } flash_size = flash_sectors * SPI_FLASH_SECTOR_SIZE; flashchip->chip_size = flash_size; flashchip->sector_size = SPI_FLASH_SECTOR_SIZE; /* * SPI flash speed params * speed = 80MHz / clkdiv_pre / clkcnt_N */ uint32_t clkdiv_pre = 1; /* default 40 MHz = 80 MHz / 1 / 2 */ uint32_t clkcnt_N = 2; switch (flash_header.speed) { case 0: clkdiv_pre = 1; /* 40 MHz = 80 MHz / 1 / 2 */ clkcnt_N = 2; break; case 1: clkdiv_pre = 1; /* 26 MHz = 80 MHz / 1 / 3 */ clkcnt_N = 3; break; case 2: clkdiv_pre = 1; /* 20 MHz = 80 MHz / 1 / 4 */ clkcnt_N = 4; break; case 15: clkdiv_pre = 0; /* clock is equal to system clock */ break; default: break; } if (clkdiv_pre) { IOMUX.CONF &= ~IOMUX_CONF_SPI0_CLOCK_EQU_SYS_CLOCK; SPI(0).CLOCK = VAL2FIELD_M(SPI_CLOCK_DIV_PRE, clkdiv_pre - 1) | VAL2FIELD_M(SPI_CLOCK_COUNT_NUM, clkcnt_N - 1) | VAL2FIELD_M(SPI_CLOCK_COUNT_HIGH, clkcnt_N/2 - 1) | VAL2FIELD_M(SPI_CLOCK_COUNT_LOW, clkcnt_N - 1); } else { IOMUX.CONF |= IOMUX_CONF_SPI0_CLOCK_EQU_SYS_CLOCK; SPI(0).CLOCK |= SPI_CLOCK_EQU_SYS_CLOCK; } ets_uart_printf("Flash size: %lu byte, speed %d MHz", flash_size, clkdiv_pre ? 80 / clkdiv_pre / clkcnt_N : 80); switch (flash_header.mode) { case 0: ets_printf(", mode QIO\n"); break; case 1: ets_printf(", mode QOUT\n"); break; case 2: ets_printf(", mode DIO\n"); break; case 3: ets_printf(", mode DOUT\n"); break; default: ets_printf("\n"); } ets_uart_printf("\nStarting ESP8266 CPU with ID: %08x\n\n", system_get_chip_id()); /* clear .bss to avoid startup problems because of compiler optimization options */ memset(&_bss_start, 0x0, &_bss_end-&_bss_start); /** * Following parts of code are partially from or inspired by the * following projects: * * [esp8266web](https://github.com/pvvx/esp8266web) * (c) PV` 2015 * * [esp-open-rtos](https://github.com/SuperHouse/esp-open-rtos.git). * Copyright (C) 2015 Superhouse Automation Pty Ltd * BSD Licensed as described in the file LICENSE * * @{ */ struct ets_store_wifi_hdr binfo; struct s_wifi_store wscfg; /* load boot info (32 byte) from last sector and */ uint32_t binfo_addr = flash_size - SPI_FLASH_SECTOR_SIZE; SPIRead (binfo_addr, (uint32_t*)&binfo, sizeof(binfo)); /* load the system config (1176 byte) from last 3 or 2 sectors */ uint32_t wscfg_addr = flash_size - (binfo.bank ? 2 : 3) * SPI_FLASH_SECTOR_SIZE; SPIRead (wscfg_addr, (uint32_t*)&wscfg, sizeof(wscfg)); Cache_Read_Enable(0, 0, 1); #if ENABLE_DEBUG printf("boot_inf sector @0x%x\n", flash_size - SPI_FLASH_SECTOR_SIZE); esp_hexdump(&binfo, sizeof(binfo), 'b', 16); #endif LOG_INFO("load boot_inf 0x%x, len %d, chk %02x\n", binfo_addr, sizeof(binfo), system_get_checksum((uint8_t*)&binfo, sizeof(binfo))); LOG_INFO("load wifi_cfg 0x%x, len %d, chk %02x\n", wscfg_addr, sizeof(wscfg), system_get_checksum((uint8_t*)&wscfg, sizeof(wscfg))); /* check whether boot_inf sector could be loaded */ if (binfo.bank > 0 && binfo.flag == 0xffffffff) { LOG_INFO("no boot_inf sector @0x%x, write a default one to flash\n", binfo_addr); memcpy (&binfo, ets_store_wifi_hdr_default, sizeof(binfo)); spi_flash_write (binfo_addr, (uint32_t*)&binfo, sizeof(binfo)); } /* check the checksum */ if (binfo.flag == 0x55aa55aa && binfo.chk[binfo.bank] == system_get_checksum((uint8_t*)&wscfg, binfo.len[binfo.bank])) { /* checksum test is ok */ } else { /* checksum error but continue */ LOG_INFO("flash check sum error @0x%x\n", wscfg_addr); /* check whether there is no wifi_cfg sector */ uint8_t* wscfg_sec = (uint8_t*)&wscfg; size_t i = 0; for ( ; i < sizeof(wscfg); i++) { if (wscfg_sec[i] != 0xff) { break; } } /* no data different from 0xff found, we assume that the flash was erased */ if (i == sizeof(wscfg)) { /* TODO write a default wifi_cfg sector automatically into the flash in that case */ LOG_INFO("\nno wifi_cfg sector found, use following command:\n" "esptool.py write_flash 0x%x $(RIOT_CPU)/bin/wifi_cfg_default.bin\n\n", wscfg_addr); } } memcpy(&g_ic.g.wifi_store, &wscfg, sizeof(wscfg)); uart_tx_flush(0); uart_tx_flush(1); init_exceptions (); /* PHASE 2: sdk_init in SDK */ start_phase2(); /** }@ */ /* set system frequency */ system_update_cpu_freq(ESP8266_CPU_FREQUENCY); /* PHASE 3: start RIOT-OS kernel */ /* init random number generator */ srand(hwrand()); /* init flash drive */ extern void flash_drive_init (void); flash_drive_init(); /* trigger static peripheral initialization */ periph_init(); /* initialize the board and startup the kernel */ board_init(); /* print the board config */ board_print_config(); #ifdef MODULE_NEWLIB_SYSCALLS_DEFAULT _init(); #endif #ifdef MODULE_ESP_GDBSTUB gdbstub_init(); #endif #ifdef CONTEXT_SWITCH_BY_INT extern void IRAM thread_yield_isr(void* arg); ets_isr_attach(ETS_SOFT_INUM, thread_yield_isr, NULL); ets_isr_unmask(BIT(ETS_SOFT_INUM)); #endif /* startup the kernel */ kernel_init(); /* should not be reached */ UNREACHABLE() ; } void start_phase2 (void) { uint32_t flash_size = flashchip->chip_size; struct rst_info rst_if; system_rtc_mem_read(0, &rst_if, sizeof(struct rst_info)); /** * Following parts of code are partially from or inspired by the * following projects: * * [esp8266web](https://github.com/pvvx/esp8266web) * (c) PV` 2015 * * [esp-open-rtos](https://github.com/SuperHouse/esp-open-rtos.git). * Copyright (C) 2015 Superhouse Automation Pty Ltd * BSD Licensed as described in the file LICENSE * * @{ */ /* changes clock freqeuncy and should be done before system_set_pll */ sleep_reset_analog_rtcreg_8266(); /* set correct system clock and adopt UART frequency */ system_set_pll(1); /* parameter is fixed (from esp_init_data_default.bin byte 48) */ uart_div_modify(0, UART_CLK_FREQ / STDIO_UART_BAUDRATE); uart_tx_flush(0); uart_tx_flush(1); syscalls_init (); thread_isr_stack_init (); read_macaddr_from_otp(info.st_mac); LOG_INFO("MAC %02x:%02x:%02x:%02x:%02x:%02x\n", info.st_mac[0], info.st_mac[1], info.st_mac[2], info.st_mac[3], info.st_mac[4], info.st_mac[5]); /* load esp_init_data_default.bin */ uint8_t* pbuf = malloc(1024); (void)pbuf; uint32_t phy_info_addr = flash_size - 4 * SPI_FLASH_SECTOR_SIZE; sdk_phy_info_t* phy_info = (sdk_phy_info_t*)pbuf; spi_flash_read (phy_info_addr, (uint32_t*)phy_info, sizeof(sdk_phy_info_t)); LOG_INFO("load phy_info 0x%x, len %d, chk %02x\n", phy_info_addr, sizeof(sdk_phy_info_t), system_get_checksum((uint8_t*)phy_info, sizeof(sdk_phy_info_t))); /* load rf_cal_sec (default rf_cal_sec = flash_sectors - 5) */ uint32_t rf_cal_sec = user_rf_cal_sector_set(); uint32_t rf_cal_sec_addr = rf_cal_sec * SPI_FLASH_SECTOR_SIZE; spi_flash_read (rf_cal_sec_addr, (uint32_t*)(pbuf + 128), 628); LOG_INFO("rf_cal_sec=%d\n", rf_cal_sec); LOG_INFO("load rf_cal 0x%x, len %d, chk %02x\n", rf_cal_sec_addr, 628, system_get_checksum(pbuf + 128, 628)); LOG_INFO("reset reason: %d %d\n", rst_if.reason, rtc_get_reset_reason()); #if ENABLE_DEBUG printf("phy_info sector @0x%x\n", phy_info_addr); esp_hexdump(pbuf, 128, 'b', 16); printf("rf_cal sector @0x%x\n", rf_cal_sec_addr); /* esp_hexdump(pbuf+128, 628, 'b', 16); */ #endif sdk_phy_info_t default_phy_info; get_default_phy_info(&default_phy_info); if (phy_info->version != default_phy_info.version) { /* check whether there is no phy_info sector */ uint8_t* phy_info_sec = (uint8_t*)phy_info; size_t i = 0; for ( ; i < sizeof(sdk_phy_info_t); i++) { if (phy_info_sec[i] != 0xff) { break; } } /* no data different from 0xff found, we assume that the flash was erased */ if (i == sizeof(sdk_phy_info_t)) { /* write a default default phy_info sector into the flash */ LOG_INFO("no phy_info sector found @0x%x, " "writing esp_init_data_default.bin into flash\n", phy_info_addr); spi_flash_write (phy_info_addr, (uint32_t*)&default_phy_info, sizeof(sdk_phy_info_t)); } LOG_INFO("set default esp_init_data!\n"); memcpy(pbuf, &default_phy_info, sizeof(sdk_phy_info_t)); } extern uint8_t* phy_rx_gain_dc_table; extern uint8_t phy_rx_gain_dc_flag; phy_rx_gain_dc_table = &pbuf[0x100]; phy_rx_gain_dc_flag = 0; int xflg = (flash_data_check(&pbuf[128]) != 0 || phy_check_data_table(phy_rx_gain_dc_table, 125, 1) != 0) ? 1 : 0; if (rst_if.reason != REASON_DEEP_SLEEP_AWAKE) { phy_afterwake_set_rfoption(1); if (xflg == 0) { write_data_to_rtc(pbuf+128); } } g_ic.c[491] = ((phy_info->freq_correct_mode & 7 )== 3) ? 1 : 0; pbuf[0xf8] = 0; /* clear RTC memory */ memset(&rst_if, 0, sizeof(struct rst_info)); system_rtc_mem_write(0, &rst_if, sizeof(struct rst_info)); uart_tx_flush(0); uart_tx_flush(1); if (register_chipv6_phy(pbuf)) { LOG_ERROR ("register_chipv6_phy failed"); } free (pbuf); /** @} */ } #endif /* MODULE_ESP_SDK */