/* * Copyright (C) 2014-2016 Freie Universität Berlin * * This file is subject to the terms and conditions of the GNU Lesser * General Public License v2.1. See the file LICENSE in the top level * directory for more details. */ /** * @ingroup cpu_stm32f0 * @{ * * @file * @brief Low-level ADC driver implementation * * @author Hauke Petersen * * @} */ #include "cpu.h" #include "mutex.h" #include "periph/adc.h" /** * @brief Maximum allowed ADC clock speed */ #define MAX_ADC_SPEED (12000000U) /** * @brief Load the ADC configuration * @{ */ #ifdef ADC_CONFIG static const adc_conf_t adc_config[] = ADC_CONFIG; #else static const adc_conf_t adc_config[] = {}; #endif /** * @brief Allocate locks for all three available ADC device * * All STM32F0 CPUs we support so far only come with a single ADC device. */ static mutex_t lock = MUTEX_INIT; static inline void prep(void) { mutex_lock(&lock); RCC->APB2ENR |= RCC_APB2ENR_ADCEN; } static inline void done(void) { RCC->APB2ENR &= ~(RCC_APB2ENR_ADCEN); mutex_unlock(&lock); } int adc_init(adc_t line) { /* make sure the given line is valid */ if (line >= ADC_NUMOF) { return -1; } /* lock and power on the device */ prep(); /*configure the pin */ gpio_init_analog(adc_config[line].pin); /* reset configuration */ ADC1->CFGR2 = 0; /* enable device */ ADC1->CR = ADC_CR_ADEN; /* configure sampling time to save value */ ADC1->SMPR = 0x3; /* 28.5 ADC clock cycles */ /* power off an release device for now */ done(); return 0; } int adc_sample(adc_t line, adc_res_t res) { int sample; /* check if resolution is applicable */ if (res > 0xf0) { return -1; } /* lock and power on the ADC device */ prep(); /* set resolution and channel */ ADC1->CFGR1 = res; ADC1->CHSELR = (1 << adc_config[line].chan); /* start conversion and wait for results */ ADC1->CR |= ADC_CR_ADSTART; while (!(ADC1->ISR & ADC_ISR_EOC)) {} /* read result */ sample = (int)ADC1->DR; /* unlock and power off device again */ done(); return sample; }